
Asset Safety versus Asset Liquidity

Athanasios Geromichalos
University of California - Davis

Lucas Herrenbrueck
Simon Fraser University

Sukjoon Lee
New York University Shanghai

This Version: July 2022
First Version: October 2018

ABSTRACT —————————————————————————————————–
Many economists assume that safer assets are more liquid, and some have practically
used “safe” and “liquid” as synonyms. But these terms are not synonyms, and mixing
them up can lead to confusion and wrong policy recommendations. We build a multi-
asset model where an asset’s safety and liquidity are well-defined and distinct, and ex-
amine their relationship in general equilibrium. We show that the common belief that
“safety implies liquidity” is generally justified, but also identify conditions under which
this relationship can be reversed. We use our model to rationalize, qualitatively and quan-
titatively, a prominent safety-liquidity reversal observed in the data.
———————————————————————————————————————

JEL Classification: E31, E43, E52, G12

Keywords: asset safety, asset liquidity, over-the-counter markets, search-and-matching, liquidity premium

Email: ageromich@ucdavis.edu, herrenbrueck@sfu.ca, sukjoon.lee@nyu.edu.

We are grateful to David Andolfatto, Nicolas Caramp, Darrell Duffie, Janet Jiang, Ricardo Lagos, Jose Lopez,
Florian Madison, Monika Piazzesi, Guillaume Rocheteau, Martin Schneider, Sanjay Singh, Alan Taylor,
Alberto Trejos, Venky Venkateswaran, Randall Wright, four anonymous referees, and the editor for their
comments and suggestions, as well as participants at the 2018 St Louis Fed Workshop on Money, Banking,
Payments, and Finance, the 2018 Wisconsin School of Business Conference on Money, Banking, and Asset
Markets, the 2020 AEA Annual Meeting, the HKBU-NTU-NYUSH-Sinica-Yonsei Macro/Finance Seminar
Series, the SENA Workshop on Financial Networks, and seminars at Bank of Canada, National University
of Singapore, Sogang University, Stanford University, UC Davis, UC Irvine, and UCSC. Edited by Greg
Kaplan.

1



1 Introduction

Recently, there has been a lot of attention on the role of safe assets and liquid assets in

the macroeconomy. Many economists, both academics and practitioners, seem to believe

that safer assets are also more liquid, and some go a step further by practically using the

two terms as synonyms or by merging them into the single term “safe and liquid assets”.1

However, the terms are not synonyms: Safety refers to the probability that the (issuer of

the) asset will pay the promised cash flow, at maturity, and liquidity refers to the ease

with which an investor can sell the asset if needed, before maturity.2 Mixing up an asset’s

safety and liquidity is not just semantics; it can lead to false conclusions and misguided

policy recommendations.

For instance, when a credit rating agency characterizes a certain bond as AAA, should

investors think of this as an assessment (only) of its safety or also of its liquidity? And,

if the answer is affirmative, how can one explain the fact that (the virtually default free)

AAA corporate bonds are considered less liquid than their riskier AA counterparts? More-

over, a recent literature in empirical macro-finance measures the so-called safety premium

as the spreads between AAA and BAA bonds, assuming that these types of bonds are

equally (il)liquid. But if certain assets carry different liquidity premia because they have

different safety characteristics (as indicated by the conventional wisdom and confirmed

by our theory), bonds of “equal liquidity” may be tricky to identify. Finally, policy makers

and financial regulators are often concerned about liquidity in certain assets markets. If

safety implies liquidity, could we just improve safety and let liquidity follow?

1 The examples are numerous, so for the sake of brevity we highlight just two. From the IMF’s 2012
Global Financial Stability Report: “Safe assets are a desirable part of a portfolio from an investor’s per-
spective, as they [...] are highly liquid, permitting investors to liquidate positions easily.” And at the 2017
American Economic Association meeting, one session was titled: “How safe and liquid assets impact mon-
etary and financial policy”.

2 Although there are economists who adopt slightly different definitions for both of these terms. For
instance, Gorton and Ordonez (2022) emphasize that an important aspect of safe assets is that they are
“information insensitive”. Also, a large number of papers in the New Monetarist literature, assume that
an asset’s liquidity refers to the ease with which that asset can be used to purchase consumption, e.g., by
serving as a means of payment; see Lagos, Rocheteau, and Wright (2017). For a careful comparison of the
various approaches, see the Literature Review (Section 1.1).
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These questions reveal that it is essential to carefully study the relationship between

asset safety and asset liquidity, rather than just assume that one implies the other. To do

so, we build a multi-asset model in which an asset’s safety and liquidity are well-defined

and distinct from one another. Treating safety as a primitive, we examine the relationship

between an asset’s safety and its liquidity. We show that the commonly held belief that

“safer assets will be more liquid” is generally justified, but with important exceptions. We

then describe the conditions under which a riskier asset can be more liquid than its safe(r)

counterparts, and use our model to rationalize a prominent safety-liquidity reversal ob-

served in the data. Finally, we highlight a surprising implication of our model about the

effect of an increase in the supply of safe assets on welfare.

To answer the research question at hand we build a dynamic general-equilibrium

model with two assets, A and B. The concept of asset safety is straightforward in our

framework: asset A is “safe” in the sense that it always pays the promised cash flow,

whereas asset B may default with a certain probability, known to everyone. The con-

cept of liquidity is more involved; specifically, we define an asset’s liquidity as the ease

with which an agent can sell it for cash (if needed). To capture this idea, we employ the

monetary model of Lagos and Wright (2005), extended to incorporate asset trade in over-

the-counter (OTC) secondary asset markets subject to search and bargaining frictions, á la

Duffie, Gârleanu, and Pedersen (2005). Another important ingredient we introduce is an

entry decision made by the agents: each asset trades in a distinct OTC market, and agents

choose to visit the market where they expect to find the best terms. Thus, in our model, an

asset’s liquidity depends on the endogenous choice of agents to visit the secondary market

where that asset is traded, not the exogenous characteristics of that market.

After agents make their portfolio decisions, two shocks are realized. The first is an

idiosyncratic shock that determines whether an agent will have a consumption opportu-

nity in that period, and the second is an aggregate shock that determines whether asset B

will default in that period. Since purchasing the consumption good necessitates the use of
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a medium of exchange (i.e., money) and carrying money is costly, in equilibrium, agents

who receive a consumption opportunity will visit a secondary market to sell assets and

boost their cash holdings. Hence, assets have indirect liquidity properties (they can be sold

for cash, although they do not serve directly as means of payment), and their equilibrium

price in the primary market will typically contain a liquidity premium, i.e., it will exceed

the fundamental value of holding the asset to maturity.

Our first result is that, other things equal, the safer asset carries a higher liquidity

premium, and that premium is increasing in the default probability of asset B. The intu-

ition is as follows. An agent who turns out to be an asset seller can only visit one OTC

market at a time; since, typically, assets are costly to own due to the liquidity premium,

agents choose to ‘specialize’ ex-ante in asset A or B. Unlike sellers, who can only sell

assets they own and are therefore committed to the market corresponding to their chosen

asset, asset buyers are free to visit any market they wish, since their money is good to buy

any asset. As a result, if asset B defaults, all asset buyers will rush into the market for

asset A. A second, more subtle force is that agents who specialize in the (riskier) asset B

endogenously choose to carry more money for precautionary reasons. Consequently, as-

set B sellers need a smaller liquidity boost, which means that the surplus generated from

trades in the market for asset B is lower. This force attracts more buyers to the market

for asset A even if asset B does not default. Taken together, these forces imply that ex post

(and regardless of the default shock realization) more buyers are attracted to the market

for asset A, which in turn encourages agents to specialize in asset A ex ante, precisely be-

cause this asset will be easier to sell down the road. Through this channel a small default

probability for asset B can be magnified into a big endogenous liquidity advantage for

asset A, even with constant returns to scale (CRS) in the OTC matching technology.

So far we have assumed that all parameters other than asset safety are kept equal.

Allowing for varying asset supplies delivers the second important result of the paper.3

3 There are two more parameters held equal in the background: the efficiency of matching in each OTC
market and the bargaining power of buyers versus sellers in each OTC market. Since our goal is to develop

4



Even with slight increasing returns to scale (IRS) in OTC matching, demand curves can

be upward sloping, because an asset in large supply is now more likely to be liquid. Con-

sequently, asset B can be more liquid than asset A, despite being less safe, as long as the

supply of the former is large enough compared to the latter.

The mechanism is as follows. When the supply of (say) asset B increases, so does

the trading volume in its associated OTC market, which in turn makes this market more

attractive to enter for both buyers and sellers. With CRS in the matching function, the

larger numbers of buyers and sellers balance out so that the matching probabilities of ei-

ther side are unchanged. And as more agents choose to specialize in asset B, each one

of them will hold a smaller amount, whereas the reverse is true for holders of asset A,

so that in equilibrium the surplus in any single trade is also balanced out across the two

OTC markets. (We dub this the dilution effect since the asset in larger supply is ‘diluted’

among more agents holding it.) Now, with IRS in the matching function, the matching

probabilities will not remain constant when more buyers and sellers enter market B, but

increase for both sides. As a result, following an increase in the supply of asset B, entry

into this market will remain attractive until the surplus of a single trade is substantially

smaller than it would be in the market for asset A. In other words, with IRS, increased

entry into a market tends to make this market even more attractive on the extensive mar-

gin, so entry will continue until the intensive margin becomes sufficiently unattractive

via the dilution effect – i.e., agents trading in the thicker market must be trading small

amounts, while agents in the smaller market trade larger amounts and get closer to satis-

fying their liquidity needs. But both of these forces imply that the asset in larger supply

(and therefore with the thicker OTC market) will command a higher liquidity premium:

first, because of its higher matching probability, and second, because a lower quantity of

asset sold increases the marginal value of selling more, which is to say, the marginal value

a theory that links asset safety and asset liquidity in an unbiased way, we assume that these parameters are
always equal in both OTC markets. This guarantees that any difference in liquidity between the two assets
is driven exclusively by differences in safety and not by exogenous market characteristics.
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of carrying more of the asset in the first place.

Our model can shed some light on the puzzling empirical observation that, in the

U.S., the virtually default-free AAA bonds are less liquid than (the less safe) AA corpo-

rate bonds.4 In recent years, regulations introduced to improve the stability and trans-

parency of the financial system (e.g., the Dodd-Frank Act) have made it especially hard

for corporations to attain the AAA score. As a result, the supply of such bonds has fallen

dramatically. During the same time, the yield on AA corporate bonds has been lower than

that on AAA bonds, even without controlling for the risk premium associated with the

riskier AA bonds. While it is plausible to attribute this differential to a higher liquid-

ity premium enjoyed by AA corporate bonds – and this is precisely what practitioners

have claimed – existing models of asset liquidity do not capture this stylized fact (for de-

tails, see Section 1.1). Our approach of combining the ‘indirect liquidity’ mechanism with

endogenous market entry can capture this stylized fact, and not only qualitatively: in

Section 5, we calibrate our model and show it can reproduce the AA-AAA yield reversal

quantitatively as well.

The model also delivers a surprising result regarding welfare. A large body of recent

literature highlights that the supply of safe assets has been scarce, and that increasing this

supply would be beneficial for welfare (see for example Caballero, Farhi, and Gourinchas,

2017). In our model this result is not necessarily true: there exists a region of parameter

values for which welfare is decreasing in the supply of the safe asset. The intuition is as

follows. In our model agents have the opportunity to acquire additional cash by selling

assets in the secondary market. When the safe asset becomes more plentiful, agents expect

that it will be easier to acquire extra cash ex-post and, thus, choose to hold less money

ex-ante. This channel depresses money demand, which, in turn, decreases the values of

4 For more details and empirical evidence, see Section 5.1. Moreover, there are other cases where the
common belief “safety and liquidity go together” is violated. Christensen and Mirkov (2019) document yet
another class of bonds – Swiss Confederation Bonds – that are extremely safe, but not particularly liquid.
And, vice versa, Beber, Brandt, and Kavajecz (2008) report that Italian government bonds are among the
most liquid, but also the most risky of Euro-area sovereign bonds.
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money and of the trade that the existing money supply can support.

1.1 Literature review

Our paper is related to the “New Monetarist” literature (see Lagos et al., 2017) that high-

lights the importance of liquidity for the determination of asset prices; see Geromichalos,

Licari, and Suárez-Lledó (2007), Lagos (2011), Nosal and Rocheteau (2013), Andolfatto,

Berentsen, and Waller (2014), and Hu and Rocheteau (2015). Unlike these papers, where

assets serve directly as means of payment, here liquidity is indirect, since agents sell assets

for money in secondary asset markets. This approach is empirically relevant and inte-

grates the concepts of liquidity adopted by monetary economics and finance (Geromicha-

los and Herrenbrueck, 2016). The indirect liquidity approach is employed in several re-

cent papers, including Berentsen, Huber, and Marchesiani (2014, 2016), Han (2015), Mat-

tesini and Nosal (2016), Herrenbrueck and Geromichalos (2017), Herrenbrueck (2019a),

and Madison (2019).

Our work is also related to the literature that studies how frictions in OTC markets af-

fect asset prices and trade, such as Weill (2007, 2008), Lagos and Rocheteau (2009), Chang

and Zhang (2015), and Üslü (2019). Vayanos and Weill (2008) is conceptually related to

our paper, since the authors use a model with trade in OTC markets to rationalize a puz-

zling empirical observation known as the “on-the-run” phenomenon. A key ingredient

in their mechanism is the existence of short-sellers. Since short-sellers initially sell an

asset and eventually buy that asset back, their concentration in one asset (in conjunction

with increasing returns to scale in matching) increase the trading volume of that asset and

therefore its liquidity.5

5 Vayanos and Weill (2008) show that if assets differ enough in their supplies, there exists a unique equi-
librium where short-sellers concentrate in the largest-supply asset, thus making it more liquid. However, in
their model agents can only hold 0 or 1 unit of an asset, thus, an increase in an asset’s supply automatically
means that more agents must hold it. In our model, the mechanism is different, since asset holdings are
perfectly divisible and agents are free to hold any asset they wish regardless of the supply. As we have
already explained, an asset in larger supply implies a thicker OTC market for that asset, and a higher liq-
uidity premium, both because of a higher matching probability and because of a higher per trade surplus
generated in the OTC market. Also, notice that in Lester, Postlewaite, and Wright (2012) an asset in larger
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Our paper is also related to the growing literature that studies the role of safe assets

in the macroeconomy. Examples include Gorton, Lewellen, and Metrick (2012), Piazzesi

and Schneider (2016), Caballero et al. (2017), Gorton (2017), Caballero and Farhi (2018),

and He, Krishnamurthy, and Milbradt (2019). None of these papers study the relationship

between asset safety and asset liquidity. Two recent exceptions are Infante and Ordoñez

(2020) and Ozdenoren, Yuan, and Zhang (2021). The former paper shows that increased

volatility and illiquidity in the economy will raise the price of safe assets due to their abil-

ity to hedge idiosyncratic risks. The latter shows that safe assets earn a liquidity premium

due to their ability to mitigate the adverse selection problem in asset markets.

Andolfatto and Martin (2013) consider a model where an asset, whose expected re-

turn is subject to a news shock, serves as medium of exchange. They show that the non-

disclosure of news can enhance the asset’s property as an exchange medium. As already

mentioned, the concept of (indirect) liquidity adopted here is different, and so is the con-

cept of safety. (The idea that some assets are more “information sensitive” is close to the

definition of safety adopted by Gorton and Ordonez (2022).) Here, an asset’s safety is sim-

ply the (ex-ante) probability with which the assets will pay the promised cash flow, which

is public knowledge and can be thought of (or approximated by) a credit rating agency’s

score. Rocheteau (2011) studies a model where bonds serve as media of exchange along-

side with money. The author shows that if the bond holders (and goods buyers) have pri-

vate information about the bond’s return, then money will endogenously arise as more

liquid asset (i.e., a better medium of exchange). In our paper the various assets’ safety

characteristics are public knowledge.

Our paper is also related to Lagos (2010), who considers a model where bonds, whose

return is deterministic, and stocks, whose return is stochastic, compete as media of ex-

supply is bound to be more liquid (even though the authors never discuss such a result). In that model, a
real asset competes with money as a medium of exchange, and producers can invest in a technology that
allows them to recognize and consequently accept the asset. Thus, a larger supply makes an asset more
likely to be accepted as a medium of exchange (thus more liquid), simply because it is more likely to make
it worthwhile for producers to invest in that technology. Again, our mechanism is completely different.
Also, neither of these papers study the relationship between asset safety and liquidity.
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change. The author quantitatively demonstrates that the equity premium puzzle can be

explained through a liquidity differential between the safe and the risky asset. Jacquet

(2021) employs a similar model, but includes a larger variety of asset classes and ex-ante

heterogeneous agents. The author shows that the equilibrium displays a “class structure”

in the sense that agents with different liquidity needs will only be willing to hold assets of

a certain risk structure. Our paper differs from the aforementioned papers, not only be-

cause it employs a different model of liquidity, but also because it predicts that an asset in

large(r) supply may carry a higher liquidity premium. This result is not present in Lagos

(2010) and Jacquet (2021), as in these papers the asset demand curve is decreasing. Thus,

our model of indirect liquidity and endogenous market entry can rationalize why assets

in limited supply can be highly illiquid, even when they enjoy a high credit rating (as in

the case of AAA corporate bonds in the U.S.), i.e., it can rationalize the reversal between

asset safety and liquidity.

He and Milbradt (2014) study a one-asset model where defaultable corporate bonds

are traded in an OTC secondary market, and show that the inverse bid-ask spread, which

is their proxy for bond liquidity, is positively related with credit ratings. However, in

their model the probability of trade between agents is exogenous. We define liquidity as

the ease with which an investor can sell her assets, if needed. We build a two-asset (easily

extended to an N -asset) model, where the probability of selling an asset depends on the

endogenous decision of agents to visit the various asset markets, which, in turn, is a func-

tion of each asset’s safety characteristics. Also, He and Milbradt (2014) employ the model

of Duffie et al. (2005) where assets are indivisible, i.e., agents can hold either 0 or 1 units of

the asset. Our model also incorporates OTC secondary asset trade à la Duffie et al. (2005),

but does so within the monetary model of Lagos and Wright (2005), which allows us to

study perfectly divisible asset holdings, and opens up a number of new insights. Such

insights include the possibility of upward-sloping demand curves, the possibility that a

riskier asset can be more liquid in general equilibrium, and the fact that welfare can be
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decreasing in the supply of safe assets.

In related empirical work, Krishnamurthy and Vissing-Jorgensen (2012) distinguish

between asset safety and liquidity, and extract safety and liquidity premia from the data to

explain why Treasury yields have been decreasing. Their model identifies the safety pre-

mium through the spreads between AAA and BAA bonds, assuming that both of these

types of bonds are equally illiquid. The present paper demonstrates that certain assets

may carry different liquidity premia precisely because they are characterized by different

default risks. This, in turn, highlights that we need more theory that studies the relation-

ship between asset safety and liquidity, and we view the present paper as a part of this

important agenda.

The rest of this paper is organized as follows. In Section 2, we describe the base-

line model, and we solve it in Section 3. We present our main results in Section 4, and

calibrate the model in Section 5. The Web Appendix contains further details including

microfoundations for key assumptions of our model, and proofs.
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2 The Model

Our model is a hybrid of Lagos and Wright (2005) (henceforth, LW) and Duffie et al.

(2005). Time is discrete and continues forever. Each period is divided into three subpe-

riods, characterized by different types of trade (for an illustration, see Figure 1 below).

In the first subperiod, agents trade in OTC secondary asset markets. In the second sub-

period, they trade in a decentralized goods market (DM). Finally, in the third subperiod,

agents trade in a centralized market (CM). The CM is the typical settlement market of LW,

where agents settle their old portfolios and choose new ones. The DM is a decentralized

market characterized by anonymity and imperfect commitment, where agents meet bilat-

erally and trade a special good. These frictions make a medium of exchange necessary,

and we assume that only money can serve this role. The OTC markets allow agents with

different liquidity needs to rebalance their portfolio by selling assets for money.

Agents live forever and discount future between periods, but not subperiods, at rate

β ∈ (0, 1). There are two types of agents, consumers and producers, distinguished by

their roles in the DM. The measure of each type is normalized to the unit. Consumers

consume in the DM and the CM and supply labor in the CM; producers produce in the

DM and consume and supply labor in the CM. All agents have access to a technology

that transforms one unit of labor in the CM into one unit of the CM good, which is also

the numeraire. The preferences of consumers and producers within a period are given by

U(X,H, q) = X − H + u(q) and V(X,H, q) = X − H − q, respectively, where X denotes

consumption of CM goods, H is labor supply in the CM, and q stands for DM goods

produced and consumed. We assume that u is twice continuously differentiable, with

u′ > 0, u′(0) = ∞, u′(∞) = 0, and u′′ < 0. The term q∗ denotes the first-best level of trade

in the DM, i.e., it satisfies u′(q∗) = 1. All goods are perishable between periods.

Notice that the agents dubbed “producers” will never choose to hold any assets, as

long as these assets are priced at a premium for their liquidity. (Why pay this premium

when they know they will never have a liquidity need in the DM?) As a result, all the
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interesting portfolio choices are made by the “consumers”. Thus, henceforth, we will refer

to the “consumers” simply as “agents”. When we use the terms “buyer” and “seller”, it

will be exclusively to characterize the role of these agents in the secondary asset market.

There is a perfectly divisible object called fiat money that can be purchased in the CM

at the price φ in terms of CM goods. The supply of money is controlled by a monetary

authority, and follows the rule Mt+1 = (1+µ)Mt, with µ > β−1. New money is introduced

if µ > 0, or withdrawn if µ < 0, via lump-sum transfers in the CM. Money has no intrinsic

value, but it possesses all the properties that make it an acceptable medium of exchange

in the DM, e.g., it is portable, storable, and recognizable. Using the Fisher equation,

we summarize the money growth rate by i = (1 + µ − β)/β; this rate will be a useful

benchmark as the yield on a completely illiquid asset. (Thus, i should not be thought of

as representing the yield on T-bills; see Geromichalos and Herrenbrueck, 2022.)

There are also two types of assets, asset A and asset B. These are one-period, nominal

bonds with a face value of one dollar; their supply is exogenous and denoted by SA, SB.

Asset j = {A,B} can be purchased at price pj in the CM, which we think of as the pri-

mary market. After leaving the CM agents receive an idiosyncratic consumption shock

(discussed below) and may trade these assets before maturity in a secondary OTC mar-

ket. Each asset j trades in a distinct secondary market, which we dub OTCj , j = {A,B}.

To make things tractable, we assume that agents can only hold asset A or asset B, and

can visit only one OTC market per period. (In Section 2.1 we discuss this assumption in

detail, and we relax it in Web Appendix C.) Thus, we say they “specialize” in asset A or

B. However, agents are free to choose any quantity of money and the asset of their choice.

The economy is characterized by two shocks, both of which are revealed after the

CM closes and before the OTC round of trade opens. The first is an aggregate shock that

determines whether asset B will default or not in that period.6 More precisely, we define

6 The timing adopted here, i.e., assuming that the aggregate shock is revealed before agents go to the
OTC, captures the idea that when an asset defaults, trade in its secondary market will also be impeded,
which will affect its liquidity. Exploring this link between default and asset liquidity is one of the main
goals of our paper. Thus, assuming that agents find themselves in the secondary round of trade after
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the aggregate state s = {n, d} (n for “normal” and d for “default”); with probability π,

s = n and each unit of asset B pays the promised dollar, but with probability 1− π, s = d

where asset B defaults and pays nothing. Throughout the paper we assume that asset A

is a perfectly safe and default-free asset.7 This aggregate default shock is iid across time.

The second shock is an idiosyncratic consumption shock determining whether an

agent will have an opportunity to consume in the DM. Only a fraction ℓ < 1 of agents

obtains this opportunity. Thus, a measure ℓ of agents will be of type C (“Consuming”),

and a measure 1 − ℓ of agents will be of type N (“Not consuming”). This shock is iid

across agents and time. Since the various types are realized after agents have made their

portfolio choices in the CM, N-types will typically hold some cash that they do not need in

the current period, and C-types may find themselves short of cash, since carrying money

is costly. Thus, in the OTC market, C-types will play the role of assets sellers and N-types

will be the asset buyers. The goal of this market is to reallocate money into the hands of

the agents who need it most, i.e., the C-types.8

As we have discussed, agents can only trade in one OTC market per period, and they

will choose to trade in the market where they expect to find the best terms. Suppose that

a measure Cj of C-types and a measure Nj of N-types have chosen to trade in the market

for asset j = {A,B}. Then, the matching technology:

f(Cj, Nj) =

(
CjNj

Cj +Nj

)1−η

(CjNj)
η, η ∈ [0, 1], (1)

determines the measure of successful matches in OTCj . The suggested matching function

satisfies f(C,N) ≤ min{C,N}, and is useful because it admits both constant and increas-

learning that asset B has defaulted better corresponds to our research question.
7 Our results are robust to different model specifications. For instance, modeling asset A as a default-free

asset is done for simplicity and because many real-world assets characterized as AAA are virtually default
free. However, all one needs is that asset A defaults with a lower probability than asset B. To simplify
the presentation in the main text, we assume for now that when asset B defaults, it defaults completely;
however, we derive the model with partial default (fraction ρ < 1 of asset B’s face value can be recovered)
in Web Appendix A.8, and we account for this in the calibration.

8 The first paper to incorporate this idea into the LW framework is Berentsen, Camera, and Waller (2007),
but there the reallocation of money takes place through a competitive banking system.
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ing returns to scale (CRS and IRS, respectively) as subcases: when η = 0, the matching

technology features CRS, while η > 0 implies IRS. Within each successful match the buyer

and seller split the available surplus based on proportional bargaining (Kalai, 1977), with

θ ∈ (0, 1) denoting the seller’s (C-type’s) bargaining power.9 Notice that the matching

technology and the bargaining protocol are identical in both OTC markets. This guaran-

tees that any differences in liquidity between assets A and B will be driven by differences

in safety, and not by exogenous market characteristics (see footnote 3).

Since all the action of the model takes place in the CM and, more importantly, the

OTC markets, we wish to keep the DM as simple as possible. To that end, we assume that

all C-type consumers match with a producer, and they make a take-it-or-leave-it offer.

Figure 1 summarizes the timing of events and the important economic actions of the

model. A few details are worth emphasizing. First notice that agents who turn out to

be C-types are committed to visit the OTC market of the asset they chose to specialize

in. (One cannot sell asset B in OTCA.) However, this is not true for N-types: an agent

who turns out to be an N-type can visit either OTC market, because her money is good

to buy any type of assets. This has an important consequence. In the default state (see

Figure 1 (b)), OTCB will shut down so all N-types will rush into OTCA. And what about

the agents who specialized in asset B and turned out to be C-types? Unfortunately, they

must proceed to the DM only with the money that they carried from the CM. But it is

important to remember that agents are aware of this possibility and may choose to hold

asset B anyway. Part of what makes this choice optimal is that they may pay a low(er)

price for asset B and choose to carry more money as a precaution.

9 The proportional bargaining solution is more tractable than the Nash solution. Moreover, in recent
work, Rocheteau, Hu, Lebeau, and In (2021) solve a sophisticated model of bargaining with strategic foun-
dations, and find that, under fairly general conditions, their solution converges to the proportional one.
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2.1 Discussion of modeling assumptions and microfoundations

A key assumption in our analysis that makes our model tractable and enables us to get

analytical results is that secondary markets are segmented and agents must specialize

in one asset in the CM. The first part of this assumption is certainly realistic: different

classes of assets trade in distinct secondary markets, and most fixed income dealers do

not intermediate multiple kinds of securities, since there is a cost to becoming an expert

in a specific security. (For instance, in investment banks different “desks” are in charge

of trading different types of securities, so they are committed ex-ante to a specific class of

assets.) The second part of the assumption, according to which agents must specialize in

one asset in the CM, is just a stark way to capture the idea that even if investors can hold

multiple assets and visit multiple secondary markets, they will visit more frequently the

market where they expect to find better trading conditions.10

There is an extensive empirical finance literature reporting that asset markets are

segmented from one another (Allen and Gale, 1994; Edmond and Weill, 2012). Many of

these papers study specific examples of assets that have (almost) identical characteristics,

yet are traded in distinct secondary markets with different degrees of liquidity, and thus

sell at different prices (e.g., Warga (1992) for “on-the-run” vs “off-the-run” Treasury bonds

that have identical payouts; and Andreasen, Christensen, and Riddell (2021) for Treasury

Inflation Protected Securities, which sell at a significant discount compared to common

Treasuries after controlling for expected inflation).

Thus, adopting a model with some market segmentation is not only theoretically

interesting, but also empirically relevant. However, one may still wonder whether we

need this strong version of market segmentation, whereby each agent can only hold one

asset at a time, and we investigate this question in several steps. First, in Section 4.3, we

discard the segmentation assumption altogether and assume that agents can trade both

10 This assumption is analogous to a discrete choice model; such models are popular in economics (es-
pecially in Industrial Organization) because they offer a tractable way of modeling individual consumer
choice over various goods while permitting a realistic description of aggregate market shares.
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assets in a consolidated secondary market. We show that market segmentation is not

necessary for our first result (safety implies liquidity), but it is essential for our second

result (a possible “disconnect” between asset safety and liquidity). Then, in the Web

Appendix, we consider versions of the model with weaker segmentation assumptions.

In Web Appendix C.1, we relax the assumption that each agent must hold only one

asset, and replace it with the assumption that they can hold both assets but visit only one

OTC market per period. This allows agents to “specialize” in asset B (and visit OTCB

in the normal state), while carrying some asset A for precautionary motives, i.e., with

an intention to sell it in OTCA in the case that asset B defaults. We find that despite

giving agents the option to carry asset A as a precaution, they choose to not exercise

it. The main reason is that asset A does not provide cheap insurance; it carries a hefty

liquidity premium. Moreover, agents in our baseline model already had a way of insuring

themselves against the default shock: they could bring money.

In Web Appendix C.2, we develop a model with two distinct marketplaces. Agents

can pay an ex-ante cost, κ1, and visit the “segmented marketplace”, which consists of two

submarkets, OTCA and OTCB. Once in this marketplace, agents must choose to visit ei-

ther OTCA or OTCB, exactly as in our baseline model. Alternatively, agents can pay an

ex-ante real cost, κ2, and visit a “consolidated marketplace”, where they can trade both

assets A and B in a single OTC market. Since the consolidated marketplace offers agents

the option to trade both assets, one may expect that all agents would be attracted there.

Our results show this is not the case because our model also contains a force that makes

the segmented marketplace desirable. The intuition is as follows. As an asset seller the

agent may (or may not) prefer the consolidated marketplace because it offers a form of

insurance in case asset B defaults. However, as an asset buyer the agent always prefers

the segmented marketplace because it offers her the ex-post flexibility of visiting either

submarket, and, crucially, avoiding OTCB in the default state. In contrast, in the consol-

idated marketplace, the whole market, including the N-types, is subject to the default of
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asset B, and there is no way to avoid it.

In sum, we show that the strong market segmentation adopted in the baseline model

as an assumption arises as an endogenous equilibrium outcome in a more general model where

agents are given the option to avoid such segmentation, and is consistent with empirically

plausible parameters.
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3 Analysis of the Model

3.1 Value functions, bargaining, and matching probabilities

In order to streamline the analysis, we relegate the derivations of the value functions and

the solutions of the various bargaining problems to Web Appendix A.1-A.2. Here is a

summary of this analysis. As is standard in models that build on LW, all agents have

linear value functions in the CM, a result that follows from the (quasi) linear preferences.

This makes the bargaining solution in the DM easy to characterize. Consider a DM meet-

ing between a producer and a C-type agent who carries m units of money, and define

m∗ ≡ q∗/φ as the amount of money that (given the price φ) allows the agent to purchase

the first-best quantity, q∗. Then, either m ≥ m∗, and the buyer can purchase q∗, or m < m∗,

and she spends all of her money to purchase the amount q = φm < q∗.

Next, consider a meeting in OTCj , j = {A,B}, where the N-type brings a quantity m̃

of money, and the C-type brings a portfolio (m, dj) of money and asset j. Since money is

costly to carry, in equilibrium we will have m < m∗, and the C-type will want to acquire

the amount of money that she is missing in order to reach m∗, namely, m∗ −m. Whether

she will be able to acquire that amount of money depends on her asset holdings. If her

asset holdings are enough (of course, how much is “enough” depends on the bargaining

power θ), then she will acquire exactly m∗ −m units of money. If not, then she will give

up all her assets to obtain an amount of money ξ(m, dj) < m∗ − m, which is increasing

in dj (the more assets she has, the more money she can acquire) and decreasing in m (the

more money she carries, the less she needs to acquire through OTC trade). This last case,

where assets are scarce, is especially interesting, because it is precisely then that having

a few more assets would have allowed the agent to alleviate the binding cash constraint,

which is why an asset price will carry a liquidity premium.

This discussion assumes that m+ m̃ ≥ m∗, i.e., that the money holdings of the C-type

and the N-type pooled together are enough to allow the C-type to purchase the first best
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quantity q∗. We restrict attention to this case for two reasons. First, our calibration in Sec-

tion 5 reveals that this case is the relevant one (see footnote 25). Second, the equilibrium

associated with the complementary case, where m + m̃ < m∗, would imply that none of

the assets carry a positive liquidity premium, a result which is clearly unrealistic. The

reason is simple: when m + m̃ < m∗, the money of the two agents pooled together is so

scarce that asset holdings become relatively plentiful. Given these two points, we choose

to restrict attention to m+ m̃ ≥ m∗. This simplifies the analysis since it implies that we do

not need to keep track of N-types’ money holdings.

One of the innovations of our paper is that the OTC matching probabilities are a

function of agents’ entry choices. Let eC ∈ [0, 1] be the fraction of C-type agents who

specialize in asset A and are thus committed to trading in OTCA, no matter the eventual

aggregate state. And let esN ∈ [0, 1] be the fraction of N-type agents who enter OTCA in

aggregate state s = {n, d}. (These terms will be carefully described in Section 3.4.) Then,

in state s, eCℓ is the measure of C-types and esN(1− ℓ) is the measure of N-types who enter

OTCA. Similarly, (1−eC)ℓ is the measure of C-types and (1−esN)(1−ℓ) is the measure of N-

types who enter OTCB. As a result, we need to track eight different matching probabilities

αs
ij , of an i-type who enters OTCj in state s (though αd

CB = αd
NB = 0 will be trivially true

in the full-default version of our model).

The matching probability of a C-type who enters OTCA in a non-default state pro-

vides a representative example:

αn
CA ≡ f [eCℓ, e

n
N(1− ℓ)]

eCℓ
=

[
enN(1− ℓ)

eCℓ+ enN(1− ℓ)

]
· [eCℓ+ enN(1− ℓ)]η.

It is the product of two terms: a standard market tightness term whereby an asset seller

benefits from asset buyers entering on the other side of the market but is congested by

asset sellers entering on the same side, and a market size term whereby any market par-

ticipant benefits from any other market participant’s presence. This market size term is
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governed by the elasticity η, and in particular it is shut down when η = 0.

3.2 Optimal portfolio choice

As is standard in models that build on LW, all agents choose their optimal portfolio in the

CM independently of their trading histories in previous markets. In our model, in addi-

tion to choosing an optimal portfolio of money and assets, (m̂, d̂A, d̂B), agents also choose

which OTC market they will enter in order to sell or buy assets, once the shocks have

been realized. The agent’s choice can be analyzed with an objective function, J(m̂, d̂A, d̂B),

which we derive in Web Appendix A.3 and reproduce here for convenience:

J(m̂, d̂A, d̂B) ≡ − φ(m̂+ pAd̂A + pBd̂B) + βφ̂(m̂+ d̂A + πd̂B)

+ βℓ
(
u(φ̂m̂)− φ̂m̂+ πmax{αn

CASCA, α
n
CBSCB}+ (1− π)αd

CASCA

)
,

where SCj is the surplus of an agent who turns out to be a C-type and trades in OTCj :

SCj = u(φ̂(m̂+ ξj(m̂, d̂j)))− u(φ̂m̂)− φ̂χj(m̂, d̂j).

In the above expression, ξj stands for the amount of money that the agent can acquire by

selling assets, and χj stands for the amount of assets sold in OTCj , j = {A,B}.

The interpretation of J is straightforward. The first term is the cost of choosing the

portfolio (m̂, d̂A, d̂B). This portfolio yields the expected payout φ̂(m̂ + d̂A + πd̂B) in next

period’s CM (the second term of J). The portfolio also offers certain liquidity benefits,

but these will only be relevant if the agent turns out to be a C-type; thus, the term in the

second line of J is multiplied by ℓ. The C-type can enjoy at least u(φ̂m̂) − φ̂m̂ just with

the money she brought from the CM. Furthermore, she can enjoy an additional benefit

by selling assets for cash in the secondary market. How large this benefit is depends on

the market choice of the agent (the term inside the max operator) and on the realization

of the aggregate shock: if asset B defaults, an event that happens with probability 1 − π,
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a C-type who specialized in that asset has no benefit. A default of asset B is not the only

reason why the C-type may not trade in the OTC markets; it may just be that she did not

match with a trading partner. This is why the various surplus terms SCj are multiplied

by the α-terms, i.e., the matching probabilities discussed in Section 3.1.11

3.3 Equilibrium

We focus on steady-state equilibria. Before we move on to characterizing possible equi-

libria, we first need to understand their structure. We have twelve endogenous variables

to be determined in equilibrium (not including the terms of trade in the OTCs):

• prices: φ, pA, pB

• real balances: zA, zB

• entry choices: eC(≡ enC = edC), e
n
N , e

d
N

• DM production: q0A(≡ qn0A = qd0A), q1A(≡ qn1A = qd1A), q0B(≡ qn0B = qd0B), q1B(≡ qn1B)

In this list of equilibrium variables, the asset prices are obvious, and zj , j = {A,B},

is simply the real balances held by an agent who chooses to specialize in asset j. The

remaining terms deserve some discussion. First, notice that the fraction of C-types who

enter OTCA, eC , does not depend on the aggregate state s = {n, d}. This is because C-

types are committed to visiting the OTC market of the asset they chose to specialize in

(and this choice is effectively made before the realization of the shock).

Regarding the DM production quantities qkj , k = {0, 1} indicates whether the C-

type did (k = 1) or did not (k = 0) trade in the preceding OTC market, and j = {A,B}

indicates the asset in which she specializes. For example, q0A is the amount of DM good

purchased by an agent who specialized in asset A and did not match in OTCA, and so

11 There are two reasons why the objective function does not contain any term that represents the event
in which the agent is an N-type. First, and most obviously, N-types are defined as the agents who do not
get to consume in the DM. Second, the OTC terms of trade, χ and ξ, depend only on the portfolio of the
C-type. An intuitive explanation was presented in Section 3.1; for the details, see Web Appendix A.2.
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on. These quantities do not depend on the aggregate state s = {n, d}. To see why, notice

that q0A depends only on the amount of real balances that the agent carried from the CM

(this agent did not trade in the OTC), and that choice was made before s was realized.

The same reasoning applies to q0B. How about the term q1A? This term depends on the

real balances that the agent carried from the CM (which, we just argued, is independent

of the shock realization), and on the amount of assets this agent carries from the CM (see

Section 3.1). How many assets does this agent carry? The answer is SA/eC : the exogenous

asset supply, SA, divided by the measure of agents who specialize in asset A. Since SA is

a parameter, and eC is independent of the state s, the same will be true for the term q1A.

To simplify the exposition of the equilibrium analysis, we focus on the block of vari-

ables {q0A, q1A, q0B, q1B, eC , enN}, which we refer to as the “core” variables. In Web Ap-

pendix A.6, we establish that the remaining variables, {zA,zB,φ,pA,pB}, follow immedi-

ately once the core variables have been determined. Of course, edN is always equal to 1. To

determine our six core variables, we proceed as follows.

First, we have two money demand equations for agents who specialize in asset A

and B: Equations (A.14)-(A.15) in Web Appendix A.6, derived in Web Appendix A.5.

What is important to remember here is that agents who choose to specialize in differ-

ent assets will typically carry different amounts of money; not surprisingly, agents who

choose to carry the less safe asset B self-insure against the probability of default (and the

shutting down of OTCB) by carrying more money.

Next, we use asset market clearing to solve for the outcome of the OTC bargaining

protocol in a form that involves only core equilibrium variables: Equations (A.16)-(A.17)

in Web Appendix A.6. Intuitively, they state that if the agent’s asset holdings are large,

then q1j = q∗, because the agent will acquire (through selling assets) the money necessary

to purchase the first-best quantity, and no more. In contrast, if the agent’s asset holdings

are scarce, she will give up all her assets and purchase an amount of DM good equal to

q0j (the amount she could have purchased without any OTC trade) plus the additional
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amount she can now afford by selling assets for extra cash.

Our last two equilibrium conditions come from the optimal OTC market entry deci-

sions of agents. An important remark is that the OTC surplus of N-types does not depend

on their portfolios (see Section 3.1 or A.2), whereas the OTC surplus of C-types does de-

pend on their portfolios. Hence, in making their entry decisions, C-types consider not

only the expected surplus of entering in either market, as is the case for N-types, but also

the cost associated with each entry decision. Another way of stating this is to say that

eC is determined ex ante and represents the decision to specialize in asset A, while enN is

determined ex post and represents the fraction of N-types who enter OTCA in the normal

state. Therefore, the optimal entry of C-types is characterized by:

eC =


1, S̃CA > S̃CB

0, S̃CA < S̃CB

∈ [0, 1], S̃CA = S̃CB ,

(2)

where the ex-ante surplus terms S̃CA and S̃CB are defined in Equations (A.18)-(A.19). The

optimal entry of N-types is characterized by:

enN =


1, αn

NASNA > αn
NBSNB

0, αn
NASNA < αn

NBSNB

∈ [0, 1], αn
NASNA = αn

NBSNB ,

(3)

in the normal state, where the ex-post surplus terms SNA and SNB are defined in Equa-

tions (A.20)-(A.21), and by:

edN =

 1, eC > 0

∈ [0, 1], eC = 0 ,
(4)

in the default state.
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We can now define the steady-state equilibrium of the model:

Definition 1. For given asset supplies {SA, SB}, the steady-state equilibrium for the core

variables of the model consists of the equilibrium quantities and entry choices, {q0A, q1A,

q0B, q1B, eC , enN}, such that (A.14), (A.15), (A.16), (A.17), (2) and (3) hold. The equilibrium

real balances, {zA,zB}, satisfy (A.10), the equilibrium price of money, φ, solves (A.11), and

the equilibrium asset prices, {pA,pB}, solve (A.12) and (A.13).

3.4 Equilibrium market entry

In this section we analyze the optimal entry decision of agents, which is at the heart of our

model. To begin with, we fix a value of eC (the fraction of agents who specialize in asset A

and, if they should turn out to be C-types, are thus committed to sell in OTCA), compute

the rest of the core equilibrium variables optimally (including the entry decision of N-

types in the normal state, enN(eC)), and then evaluate the best response of a representative

agent to our initial guess of eC . This task becomes easier by recognizing that there are

three opposing forces at work. We dub them the congestion effect, the coordination effect,

and the dilution effect; they are described in detail in Web Appendix A.7, so we focus on

an intuitive summary here.

First, a high initial eC will discourage the representative agent from holding asset A

because it implies that there will be many sellers in OTCA; holding the measure of buyers

constant, it becomes harder to match for each of the sellers. This is the “congestion effect”.

However, a high eC also attracts buyers to market A, i.e., it implies a high enN , which in

turn improves sellers’ matching probability and encourages the representative agent to

hold asset A; this is the “coordination effect”. With CRS the two effects tend to balance

out, while with IRS the coordination effect becomes stronger. A more subtle force is the

“dilution effect”. When eC is high, many agents specialize in asset A, and each one of

them carries a small fraction of the (fixed) asset supply. As a result, the surplus generated

per meeting in OTCA will be small, another force that discourages the representative agent
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from holding asset A when many others already do so.

Moving to the formal analysis, we construct equilibria as fixed points of eC . To be

specific: first, we fix a level of eC ; then we solve for the optimal portfolio choices through

Equations (A.14)-(A.17) and (3); and finally, we define the C-types’ best response function:

G(eC) ≡ S̃CA − S̃CB,

where the surplus terms have the optimal choices substituted. This function measures the

relative benefit to an individual C-type from specializing in asset A over asset B, assuming

a proportion eC of all other C-type agents specialize in A, and all other decisions (portfolios

and entry of N-types) are conditionally optimal. We say that a value of eC is part of an

“interior” equilibrium if eC ∈ (0, 1) and G(eC) = 0, or a “corner” equilibrium if eC = 0

and G(0) ≤ 0 (B-corner) or eC = 1 and G(1) ≥ 0 (A-corner).

Proposition 1. The following types of equilibria exist, and have these properties:

(a) There exists a corner equilibrium where eC = 0, enN = edN = 0.

(b) There exists a corner equilibrium where eC = 1, enN = edN = 1.

(c) Assume η = 0 (CRS) and asset supplies are low enough so that assets are scarce in OTC trade.

Then, limeC→0+G(eC) > 0 > G(0); the equilibrium at the B-corner is not robust to small

trembles.

(d) Assume η = 0 (CRS) and asset supplies are low enough so that assets are scarce in OTC trade.

Then, limeC→1G(eC) < G(1). If π → 1, then the limit is negative, and the equilibrium at the

A-corner is not robust, either.

(e) Assume η = 0 (CRS), π → 1, and asset supplies are low enough so that assets are scarce in

OTC trade. Then, there exists at least one interior equilibrium which is robust.

(f) Given η > 0 (IRS), limeC→0+G(eC) ̸= G(0).

(g) Given η > 0 (IRS), limeC→1−G(eC) = G(1) > 0; the equilibrium at the A-corner is robust.

Proof. See Web Appendix B.1.
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Figures 2 and 3 illustrate these results for the CRS and the IRS case, respectively. The

left panel of each figure depicts the individual C-type’s best response function, G(eC).

Since this function depends not only on the behavior of fellow C-types, but also on that of

N-types, on the right panel of each figure we show the optimal entry choice of N-types,

enN , as a function of eC . The figures also illustrate how equilibrium entry is affected by

changes in the supply of asset A, keeping the supply of asset B constant.

As indicated in the right panel of each figure, we have enN(0) = 0 and enN(1) = 1:

when all C-types are concentrated in one market, the N-types will follow. Generally, the

higher eC is, the more N-types would like to go to market A: this is just the coordination

effect and it tends to make enN(eC) increasing. Whether it will be strictly increasing or

not, ultimately depends on the strength of the dilution effect relative to the coordination

effect. This is why in both figures, enN(eC) is increasing when A is large: it is a large asset

supply that weakens the dilution effect.12

Next, we have G(0) < 0 and G(1) > 0, while enN(0) = 0 and enN(1) = 1. This illustrates

parts (a) and (b) of Proposition 1; the corners are always equilibria (marked with circles on

the left panel of the figures). However, with CRS these equilibria are not robust because G

is discontinuous at the corners; this illustrates parts (c) and (d) of the proposition.13 Also,

with CRS the congestion effect is so dominant that the G-function is globally decreasing in

the interior, as shown in part (e) of the proposition and illustrated in Figure 2. Therefore,

there exists a robust interior equilibrium where the representative C-type is indifferent

between entering market A or B; i.e., G(eC) = 0. As the supply of asset A increases, so

does the equilibrium value of eC , because a larger asset supply weakens the dilution effect

12 There is also a difference between the two figures. In Figure 2 (CRS case), enN (eC) is strictly increasing
in its entire domain. However, in Figure 3 (IRS case), and for the case of large SA, enN (eC) reaches 1 for a
rather small value of eC and becomes flat afterwards. This is because with IRS, the desire of N-types to go
to the market with many C-types, i.e., the coordination effect, is supercharged.

13 More precisely, they are not “trembling hand perfect” Nash equilibria. Consider for example the
equilibrium with enN = eC = 1 (a similar argument applies to the one with enN = eC = 0). Since all N-types
visit market A, the representative C-type also wishes to visit that market. (Why try to trade in a ghost
town, which OTCB is in this case?) However, if an arbitrarily small measure ε of N-types visited market
B by error, the representative C-type would have an incentive to deviate to market B, where her chance of
matching is now extremely high (since eC = 1, she would be the only C-type in that market).
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and increases the incentives of agents to concentrate on market A.

Moving on to the IRS case, the two corner solutions are still equilibria, and since IRS

strengthen the coordination effect, the equilibrium where all agents go to OTCA (enN =

eC = 1) is now robust (part (g) of the proposition). This may or may not be true for the

B-corner (enN = eC = 0), depending on the values of π and η.14 Figure 3 demonstrates

the case of non-robustness; as shown in part (f) of the proposition, the best response

function is discontinuous at the B-corner, though it is continuous at the A-corner. With

the coordination effect amplified, multiple interior equilibria are typical (as in the case

of “small SA” and “medium SA”). However, the only robust interior equilibrium is the

one where G has a negative slope. A rise in SA will lead to an increase in the (interior

and robust) equilibrium value of eC . But with IRS, another interesting possibility arises:

if SA is large enough, the desire of agents to coordinate on OTCA is so strong that interior

equilibria cease to exist. This is depicted in the “large SA” case, where one can see that

the A-corner (with enN = eC = 1) is the unique robust equilibrium entry outcome.

3.5 Liquidity premia

Most of our main results will be about the liquidity premia assets A and B may carry. In

equilibrium, asset prices consist of a “fundamental value” multiplied by a premium that

reflects the possibility of selling the asset in the OTC market. We define the fundamental

value of an asset as the equilibrium price that would emerge if this possibility was elimi-

nated. In that case, agents would value the assets only for their payouts at maturity, and

the equilibrium prices would be given by 1/(1 + i), for asset A, and π/(1 + i), for asset B.

14 Consider first the equilibrium with enN = eC = 1. With IRS the desire to go to OTCA (where all agents
are concentrated) is so strong that, even if some N-types visit OTCB by error, the representative C-type no
longer has an incentive to deviate to that market (unlike the CRS case; see footnote 13). But the channel
described so far is relevant for both corners. So why is the equilibrium where all agents go to OTCB not
always robust as well? Because OTCB is the market of the asset that may default. When that happens
(ex-post), all N-types will rush to market A, i.e., edN = 1, and this creates an additional incentive for the
representative C-type to deviate to market A (a decision made ex-ante). This additional incentive will be
relatively large, when π is low (high default probability) and η is low (weak coordination effect). Therefore,
the equilibrium with enN = eC = 0 is likely to be non-robust for relatively low values of π and η.
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The liquidity premium of asset j, denoted by Lj , is therefore defined as the percent-

age difference between an asset’s price and its fundamental value:

pA =
1

1 + i
(1 + LA), pB =

π

1 + i
(1 + LB), (5)

where pA and pB are described by the asset pricing equations (A.12) and (A.13), and:

LA = ℓ ·
(
παn

CA + (1− π)αd
CA

)
· θ

ωθ(q1A)
· (u′(q1A)− 1),

LB = ℓ · αn
CB · θ

ωθ(q1B)
· (u′(q1B)− 1).

(6)

Each liquidity premium is the product of four terms. First, the probability that an agent

turns out to be a C-type and thus needs liquidity at all (ℓ). Second, given that the agent is

a C-type, the expected probability of matching in the respective OTC market, conditional

on entering that market. Third, the share of the marginal surplus captured by the C-

type (θ/ωθ), which is endogenous but constrained to the interval (0, θ]. And fourth, the

marginal surplus of the match: the utility gained by a consumer who brings one more

unit of real balances into the DM, net of the production cost (u′(q1j)− 1).

Thus, there are two ways a liquidity premium can be zero: either the relevant OTC

market is closed (αCj = 0), or assets are so plentiful that selling an extra asset in the OTC

does not create additional surplus in the DM (q1j = q∗, thus u′(q1j) = 1). In the latter case,

the asset is still “liquid”, but its liquidity is inframarginal so it does not affect the price.
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4 Main Results

4.1 Result 1: Safe and liquid

The first result of the paper is that, other things equal, the safer asset (A) tends to be more

liquid. We demonstrate this result adopting the liquidity premium as the measure of

liquidity. However, in Web Appendix B.4, we confirm that this result remains valid if one

adopts trade volume in the OTC market as the measure of asset liquidity (this approach

is common in the finance literature). Throughout Section 4.1, we assume that the supplies

of the two assets are equal (SA = SB), in order to focus on liquidity differences purely

due to the assets’ safety differential. Because of the complexity of our model, we break

our analysis into two stages.15 First, we take a local approximation of our model around

π → 1, assuming CRS (η = 0). The perturbation of this specification with small changes in

π can be solved in closed form (see Web Appendix B.2). Second, in order to obtain global

results away from π → 1, and to conduct comparative statics with respect to η, we solve

the model numerically. The following proposition summarizes our analytical results:

Proposition 2. Assume that asset supplies SA and SB are equal and are low enough so that assets

are scarce in OTC trade. Then:

(a) At π = 1, there exists a symmetric equilibrium where eC = eN = 0.5, q0A = q0B, q1A = q1B,

and LA = LB.

(b) Assume η = 0 (CRS) and (1− ℓ)θ is sufficiently large. Then, locally, π < 1 implies LA > LB:

the safer asset is more liquid.

Proof. See Web Appendix B.2.

15 Our model has six ‘core’ equilibrium variables, most of which show up in multiple equations; these
equations are non-linear and include kinks, due to the various branches of the bargaining solutions and
the agents’ market entry decisions. Simply put, every time a parameter value changes, all six endogenous
variables are affected by simultaneous and, typically, opposing forces. For more detail, one can inspect
matrix equation (B.8) in the Web Appendix, which describes the effect of changes in π on the core variables
in general equilibrium, keeping in mind that this matrix is evaluated at the limit as π → 1.

29



Naturally, when π = 1, the two assets are perfect substitutes and their equilibrium

prices (and liquidity premia) will be equal. However, as π falls below 1, the liquidity

premium of asset A generally exceeds that of asset B. Near the symmetric equilibrium,

the derivative of the difference between the liquidity premia with respect to π is:

d(LA − LB)

dπ

∣∣∣∣
π→1

= ℓθ
u′(q1)− 1

wθ(q1)
(αn

CA − αd
CA) . . .

+ ℓθ
u′′(q1)

wθ(q1)2
× d(q1A − q1B)

dπ
+ ℓθ

u′(q1)− 1

wθ(q1)
× d(αn

CA − αn
CB)

dπ

The first term on the right-hand side represents a negative direct effect: the probability of

meeting a buyer for asset A is always lower in the normal state than in the state where B

defaults (αn
CA < αd

CA), therefore the liquidity advantage of asset A increases as B becomes

less safe (π ↓, i.e., dπ < 0). But this liquidity advantage is magnified by the endogenous

responses of agents to perceived default risk, which affect what happens even in the nor-

mal state. Consider the second term in the equation. An agent who specializes in asset B

despite the default risk will self-insure by carrying more money, which translates (after

OTC trade) to a higher q1B, resulting in a lower marginal utility of selling asset B (indi-

cated by multiplication with u′′(q1) < 0) and thus a lower liquidity premium for asset B;

thus, this intensive margin effect is also negative and always reinforces the direct effect.

Finally, there is the the third term in the equation, representing an extensive margin

effect: generally, when π < 1, N-types respond more strongly to the lower trading surplus

in the B-market, thus the matching probability for C-types is higher in OTCA. If so, then

all three effects point in the same direction and thus the overall sign of the equation is

negative, as per part (b) of Proposition 2. Analytically, we can show that this is indeed

the case when (1− ℓ)θ is sufficiently large; numerically, we can find counterexamples, but

the overall negative sign is still the predominant result.16

16 To be precise, we checked the sign for all combinations of θ and ℓ in {0.1, 0.5, 0.9}, and asset supplies
of SA = SB ∈ {.02, .05, .10, .15}, with η = 0, i = .1, and M = 1 maintained. Out of these 36 parameter
combinations, in four of them the assets are so plentiful that both liquidity premia are zero for any π; in
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Figure 4 illustrates our result for a range of π, and for both CRS and an intermediate

degree of IRS. In each of these cases, the difference between LA and LB is positive and

strictly decreasing in π. It is important to remind the reader that this differential is purely

due to liquidity; it is not a risk premium. Indeed, decreasing π makes agents less willing

to hold asset B because that asset is now at higher risk of default, but that effect is already

included in the fundamental value of the assets (see Equations 5). The new result here is

that as asset B becomes less safe it also enjoys a smaller liquidity premium on top of the

smaller fundamental value.

The intuition behind Result 1 is as follows. Unlike C-types, who are committed to

visit the market of the asset in which they chose to specialize, N-types are free to visit

any market they wish, since their money is good to buy any asset. Consequently, if asset

B defaults, all the N-types (even those who had chosen to specialize in asset B) will rush

into OTCA. But there is also a more subtle force at work: precisely because asset B may

default, agents who specialize in that asset B endogenously choose to carry more money

as insurance. Consequently, asset B sellers need a smaller liquidity boost, which means

that the surplus generated from asset trades in OTCB is lower. This is a force that attracts

more N-types to OTCA even if asset B does not default. Taken together, these two forces im-

ply that ex-post (and regardless of the default shock realization) more buyers are attracted

to OTCA. This, in turn, incentivizes agents to specialize in asset A ex-ante, as they realize

that in this market they will have a high trade probability, if they turn out to be sellers.

The discussion following Equations (6) reveals why this is important for liquidity:

an agent who buys an asset today (in the primary market) is willing to pay a higher price

if she expects that it will be easy to sell that asset ‘down the road’, and, importantly, it

is the C-types who sell assets down the road. Through this channel, any positive default

probability for asset B translates into a matching advantage for C-types in OTCA. This,

three of them, all with maximal ℓ and minimal asset supplies, the sign is reversed so that LA < LB when
π < 1, i.e., the safer asset is less liquid; in the remaining 29 cases, we have the ‘normal’ result where the
safer asset is more liquid. For more details, see Web Appendix B.2.
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in turn, translates into a higher liquidity premium for asset A, because that premium

depends on the (anticipated) ease with which the agent can sell the asset if she turns out

to be a C-type. Naturally, this channel, and the liquidity differential between the two

assets, will be magnified if matching is characterized by IRS.

4.2 Result 2: Safer yet less liquid

The previous section established that a safer asset will also be more liquid – other things

being equal. Of course, other things are not always equal, and of those we are particu-

larly interested in asset supplies. Allowing for differences in asset supplies delivers the

second important result of the paper: even with slight IRS in OTC matching, the coor-

dination channel becomes so strong that asset demand curves can be upward sloping.

Consequently, asset B can carry a higher liquidity premium than the safe asset A, as long

as the supply of the former is sufficiently larger than that of the latter.

Figure 5 depicts the liquidity premia for assets A and B as functions of the supply

SB, keeping SA fixed, and for various degrees of IRS in matching. First, notice that the

liquidity premium on asset A is always decreasing in SB. With CRS (top-left panel), this

is also true for the liquidity premium on asset B, as is standard in existing models of

asset liquidity. However, with even a small degree of IRS, the asset demand curves have

upward-sloping segments. And if SB exceeds SA by a large enough amount, we observe

LB > LA, i.e., the less safe asset emerges as more liquid.

The mechanism of this result is as follows. As we have seen, our model has a channel

whereby a safer asset also enjoys an endogenous liquidity advantage. However, whether

this advantage will materialize depends on the relative strength of other channels. Con-

sider a change in an asset’s supply (say, SB ↑): in equilibrium, this will be accommodated

by a shift in the proportion of agents holding this asset (eC ↓) so that each individual

agent, whether holding A or B, can obtain a similar surplus when selling that asset in

the corresponding OTC. This is the dilution effect described in the previous section, and
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as long as we have constant returns in matching the other two effects (congestion and

coordination) offset, so this is the end of the story.

With IRS, however, the coordination effect (whereby entry of sellers in an OTC mar-

ket begets the entry of buyers, and vice versa) is strengthened and dominates the conges-

tion effect (see Web Appendix A.7). What does this mean for the effects of an increase

in SB? Following the logic described above, eC decreases (more agents hold asset B and

thus enter OTCB as sellers), and following the logic described in Section 3.4, enN decreases

too (assuming asset B does not default, more buyers enter OTCB). But with a strong

coordination effect, this means that the matching probability increases for both sides in

OTCB, and decreases for both sides in OTCA, which begets a further shift in entry rates.

We illustrate this channel in Figure 6.17 (In principle, the coordination effect could be so

strong as to dominate both the congestion and dilution effects combined, in which case

the asset in larger supply would be the only liquid one, irrespective of its safety; however,

this only happens for values of η far higher than our empirical study in Section 5 allows.)

Thus, with IRS in matching, there is a “thick market” channel which is so strong that the

premium an agent is willing to pay for an asset can be increasing in that asset’s supply.

Figure 7 summarizes Results 1 and 2. It depicts the liquidity premia of assets A and

B as functions of SB, keeping SA fixed, with a slight degree of IRS, η = 0.2. When the

supplies of the two assets are equal (SB = SA), asset A carries a higher liquidity premium

(Result 1). However, as SB increases further, we enter the region where the demand for

asset B becomes upward sloping, until eventually LB surpasses LA (Result 2).

17 Close inspection of the figure reveals another interesting effect: the sell-probability always responds
more strongly to any impulse than the buy-probability. This reflects the fact that N-types always respond
more elastically to any change in market attractiveness, which happens because their market entry choice is
made ex post and any cost of holding money or assets is already sunk; the C-types, on the other hand, must
take the cost of holding assets into account. This fact serves to further amplify our result of upward-sloping
demand curves, but the result would still hold if we forced eC = enN in the background.
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4.3 Consolidated secondary asset market

In this section, we abandon the segmentation assumption and study a model where

agents can trade both assets in a single consolidated OTC market. The purpose of this

section is to help the reader understand exactly which results the segmentation assump-

tion is responsible for. The main difference between this section and the baseline model is

that now there exists a unique consolidated secondary market where agents can liquidate

assets. With a unique OTC market, agents have a trivial entry decision, i.e., they all visit

the consolidated market. Within that market, the matching technology and the bargain-

ing protocol remain unaltered. The details of the model, including characterization of the

equilibrium, are presented in Web Appendix B.3. Here we discuss the main result.

Proposition 3. We restrict attention to equilibria with positive liquidity premia. In the consol-

idated market model, regardless of the individual asset supplies, SA, SB, it is always true that

LA > LB. Thus, Result 1 holds in the model with a unique consolidated market, but Result 2 fails.

Proof. See Web Appendix B.3.3.

Proposition 3 implies that market segmentation is not a necessary condition for Result 1

(other things equal, safety implies liquidity), but it is a necessary condition for Result 2 (a

less safe asset could be more liquid). The reason why Result 1 holds here is different, and

simpler, than the justification provided in Section 4.1: a liquidity premium reflects down-

ward sloping demand for liquidity, and, in the default state, when there is less liquidity,

agents value the remaining liquidity (the one provided by the safe asset A) more. How-

ever, since LA > LB for any asset supplies, the riskier asset B can never be more liquid

than asset A. We conclude that some form of segmentation is necessary for the safer asset

to be less liquid.
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4.4 Result 3: Safe asset supply and welfare

In our final result, we highlight an important implication of our model about the effect

of an increase in the supply of safe assets on welfare. A large body of recent literature

highlights that the supply of safe assets has been scarce, and that increasing this supply

would be beneficial for welfare (see, for example, Caballero et al., 2017). In our model this

result is not necessarily true. In particular, welfare may not be monotonic in SA.

First, let us define the welfare function of this economy, which is the C-type agent’s

surplus in the DM, averaged between agents who had the opportunity to rebalance their

portfolios in the OTC round of trade, and those who did not.18 Clearly, one also needs to

remember that here we have agents who chose to specialize in different assets, and two

possible aggregate states (default and no-default). In the normal state, welfare is:

Wn = eCℓ ·
[
(1− αn

CA)
(
u(q0A)− q0A

)
+ αn

CA

(
u(q1A)− q1A

)]
+ (1− eC)ℓ ·

[
(1− αn

CB)
(
u(q0B)− q0B

)
+ αn

CB

(
u(q1B)− q1B

)]
,

and in the default state, it is:

Wd = eCℓ ·
[
(1− αd

CA)
(
u(q0A)− q0A

)
+ αd

CA

(
u(q1A)− q1A

)]
+ (1− eC)ℓ ·

(
u(q0B)− q0B

)
.

We define aggregate welfare as:

W = πWn + (1− π)Wd.

Figure 8 plots equilibrium welfare as a function of the supply of the safe asset, and

highlights the case in which welfare is non-monotonic in SA. This result may seem sur-

prising at first. A higher supply of asset A enhances the liquidity role of that asset (or,

18 In models that build on LW, steady-state welfare depends only on the volume of DM trade. Hence, a
sufficient statistic for welfare is how close the average DM production is to the first-best quantity, q∗.
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equivalently, allows for more secondary market asset trade), which, in turn, should allow

agents to purchase more goods in the DM. While not wrong, this intuition is incomplete.

What is missing is that when the safe asset becomes more plentiful, agents expect that it

will be easier to acquire extra cash ex-post and, thus, they choose to hold less of it ex-ante.

In other words, our model is characterized by an externality: agents prefer to carry assets

rather than money, and they wish to acquire money in the secondary market(s) only after

they have learned that they really need it (i.e., only if they have turned out to be a C-type).

But someone has to bring the money, and that someone will not be adequately compen-

sated. This channel depresses the demand for money, which, in turn, decreases the value

of money and the volume of trade that the existing money supply can support.

An interesting detail seen in Figure 8 is that welfare always decreases when SA is

large enough. This feature of equilibrium can be explained a follows. As SA increases,

the amount of DM goods purchased by an agent who traded in OTCA, q1A, also increases,

because that agent was able to sell more assets and boost her money holdings. On the

other hand, as SA increases, the amount of DM goods purchased by an agent who did

not trade in OTCA, q0A, decreases, because the higher asset supply induced that agent to

carry fewer money balances ex-ante (see previous paragraph). Hence, an increase in SA

generates two opposing effects on welfare: the surplus term u(q1A)−q1A (involving agents

who traded in OTCA) increases, but the surplus term u(q0A)− q0A (involving agents who

did not trade in OTCA) decreases.19 While it is hard to know which effect prevails for

any value of SA, what is certain is that if SA keeps rising, there will come a point where

the marginal liquidity benefit of more A-assets will be zero (because q1A → q∗ implies

u′(q1A) → 1). Near that point, an increase in SA still hurts welfare by depressing u(q0A)−

q0A (because u′(q0A) ≫ 1), but now it generates no countervailing benefit.

19 Of course, this is a general equilibrium model where any change in SA affects not only the terms
q0A, q1A, but also the terms q0B , q1B . However, the latter is a secondary effect which turns out to be quanti-
tatively not too important.
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5 Quantitative Analysis

5.1 Motivation: The illiquidity of AAA corporate bonds

An interesting fact that has recently drawn the attention of practitioners (but not so much

that of academic researchers yet) is that, in the U.S., the virtually default-free AAA bonds

are less liquid than (the riskier) AA corporate bonds. Figure 9 plots the time-series yields

of AAA versus AA corporate bonds (as well as their difference) on the top panel, and,

as a reference point, it does the same for the AAA versus AA municipal bond yields in

the bottom panel. The bottom panel is consistent with what one would expect to see:

the riskier AA municipal bonds command a higher yield than the one on AAA municipal

bonds, because investors who choose to hold the former want to be compensated for their

higher default probability.

Interestingly, this logical pattern is reversed in the case of corporate bonds. On the

top panel of the figure, we see that in the last 5 years of our sample, the yield on AA

corporate bonds has been consistently lower than that on AAA bonds. Why do investors

command a higher yield to hold (the virtually default-free) AAA corporate bonds? Many

practitioners have claimed that this is so because the secondary market for AAA corporate

bonds is extremely illiquid.20 Our model could shed some light on this empirical obser-

vation, if it was the case that AAA corporate bonds have a scarce supply relative to AA

corporate bonds. This turns out to be overwhelmingly true. In the years following the

financial crisis, regulations introduced to improve the stability and transparency of the

financial system (such as the Dodd-Frank Act) have made it especially hard for corpora-

tions to attain the AAA score. This resulted in a large decrease in the outstanding supply

of this class of bonds. As a benchmark of comparison, in June 2018, the outstanding sup-

20 This narrative is consistent with the observations depicted in Figure 9, and it is supported by further
evidence. For instance, He and Milbradt (2014) document that the bid-ask spread in the market for AAA
corporate bonds is higher than the one in the market for AA corporate bonds. Additionally, in recent years
Bloomberg has ceased constructing its price index for AAA-rated corporate bonds, due to the dearth of
outstanding bonds and the lack of secondary market trading. Of course, a high bid-ask spread and a low
trade volume are both strong indicators of an illiquid market.
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ply of AAA over AA corporate bonds was 1/10, while the same statistic for municipal

bonds was 1/3.

While it is plausible to attribute the irregularity observed on the top panel of Figure 9

to ‘some liquidity story’, existing models of liquidity cannot help us understand this puz-

zling observation (see a review of the literature in Section 1.1). In these papers, the asset

demand curves are decreasing, hence, an asset in large (small) supply will tend to have a

low (high) liquidity premium. Our model formalizes the idea that an asset in very scarce

supply will be illiquid, even if it maintains an excellent credit rating. And our ‘indirect

liquidity’ approach, coupled with endogenous market entry, is key for delivering this

empirically relevant result.21

5.2 Quantitative exercise

Motivated by the dramatic decrease in the number of AAA-rated corporations in the early

2010s, discussed in Section 5.1, and the resulting fall in the supply of AAA bonds, we

want to test whether the model can quantitatively match the observed changes in the

spread between AAA and AA yields. To do so, we calibrate the model to data on the

U.S. economy and bond markets, split into a “before” (2004-2011) and “after” (2012-2018)

period. We feed the model data on bond supplies before and after the split, and show that

it is capable of matching the spreads observed in those periods.22

For the utility function, we define u(q) = q1−σ/(1− σ). Thus, we need to calibrate ten

parameters: the supplies of bonds and money (SA, SB, and M ), the elasticity of marginal

21 The case of AAA versus AA US corporate bonds is not the only one where the commonly held belief
that “safety and liquidity go together” is violated. Christensen and Mirkov (2019) highlight yet another
class of bonds – Swiss Confederation Bonds – that are considered extremely safe, yet not particularly liquid.
Furthermore, Beber et al. (2008) report that Italian government bonds are among the most liquid, despite
also being among the riskiest Euro-area sovereign bonds. The authors justify this observation by pointing
to the large supply of Italian debt, which is consistent with our model’s prediction.

22 The number of AAA-rated corporations in the U.S., never high, decreased to four – Automatic Data
Processing, Exxon Mobil, Johnson & Johnson, and Microsoft – in 2011. (Automatic Data Processing got
downgraded in 2014, and Exxon Mobil in 2016. Today, there are only two AAA-rated companies.) We also
repeated our analysis with the sample split a year earlier or later, and obtained similar results.
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utility (σ), the nominal interest rate on an illiquid bond (i = (1 + µ − β)/β, which sub-

sumes time preference and expected inflation), the fraction of C-type agents (ℓ), the rela-

tive bargaining power of C-types (θ), the degree of returns to scale in the OTC matching

function (η), and the default probability (1 − π). For the calibration we use the version

of our model that allows for partial default (presented in Web Appendix A.8), thus, we

also need to calibrate the recovery rate in case of default (ρ). Let us point out that in this

section, to ease the presentation, we focus on the version of our model where agents must

hold only one asset and visit only one OTC market (full segmentation). However, in Web

Appendix C.2.1 we repeat our calibration exercise for the general model where agents can

trade both assets and avoid market segmentation, and we discuss the parameter values

under which the unique equilibrium of the general model coincides with the specification

considered here.

Some of the model parameters have straightforward empirical targets, while others

do not. For the latter, we start by showing that for some (arguably) reasonable choices,

our model delivers a safer-yet-less-liquid yield reversal similar to the one we observe

in the data. Additionally, we perform the inverse experiment: what combinations of

parameters are required in order to match the yield spreads exactly, before and after the

change in relative supply?

First, for the bond supplies SA and SB, we use the market valuation of the ICE BofA

AAA US Corporate Index (C0A1) and ICE BofA AA US Corporate Index (C0A2), and for

M , we use the MZM monetary aggregate (from FRED). We divide the bond supplies by

the money stock for each year, and then average over 2004-2011 and 2012-2018 to obtain

our “before” and “after” values of AAA (0.0109 vs 0.0049) and AA (0.0477 vs 0.0445) bond

supplies, relative to a normalized M = 1. For i, we cannot use any observed interest rate

since no traded asset is perfectly illiquid; instead, we use an estimate of 7%/year based on

time preference, expected real growth, and expected inflation (Herrenbrueck, 2019b). We

set ℓ = 0.5 for symmetry (equal numbers of potential buyers and sellers in the secondary
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asset markets). Next, we follow the procedure of Rocheteau, Wright, and Zhang (2018)

(where to be consistent with the rest of our calibration, we use MZM as the monetary

aggregate) and set σ = 0.34 to match the slope of the empirical U.S. money demand

function. For the recovery rate ρ, we use 0.4 (Moody’s Investors Service, 2003); for the

probability that asset B pays out, we set π = 0.996.23

This leaves us with the bargaining power θ and the scale elasticity η, which have no

direct counterparts in the data. For θ, since it is the bargaining power of asset sellers in the

OTC markets, it scales liquidity premia on both bonds approximately proportionally (see

Equation 6), without favoring one or the other. Since it is precisely these liquidity premia

that make our model work, we want θ to be on the high side (while still less than 1 so

that asset buyers have a meaningful market entry decision); thus, we set θ = 0.8. For η,

we already know that some amount of IRS is necessary for our Result 2, thus it must be

positive. We also know from our numerical examples (e.g., Figure 6) that η does not have

to be particularly high, and indeed if η is too high then one of the assets will attract all

secondary market trade, and the other will be completely illiquid. Thus, we set η = 0.1.24

A summary of all the calibrated parameter values can be found in Table 1.

Table 2 summarizes our findings. As we can see, the supply of AA corporate bonds

did not change much across the two periods, but the supply of AAA bonds decreased

by more than half. The spread between AA and AAA yields was positive in the earlier

period, as every textbook would have predicted, then became negative in the later period.

The final row of the table shows the outcome of our calibrated model, which captures

23 The 1982-2003 issuer-weighted mean recovery rate of all bonds was 40.2%; this is the most recent data
we could find. For AA bonds specifically, the rate is 41.1% if default happens five or more years later –
at which point the bond might not be rated AA anymore – but higher if default happens closer in time to
the latest AA rating. Furthermore, eventual recovery rates do not necessarily cover all costs (legal, etc.)
associated with recovering assets after a default. Historical default probabilities are lower than our value
for π implies, but similarly hard to define for the reason discussed above: defaults are usually preceded by
a downgrade. Of course, from the point of view of an investor, it does not matter if a bond defaults outright
or if it is downgraded before eventually defaulting.

24 There is also the question of how we deal with the multiplicity of equilibrium (see Proposition 1).
Numerically, we use e0C ≡ SA/(SA +SB) as a starting point, then iterate the function G(eC) in the direction
of its sign, until G(eC) → 0 or until reaching a corner. If the corners are not robust, this procedure will
always find a robust interior equilibrium.
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both the positive spread in the earlier period when AAA supplies were relatively high

and the negative spread in the later period when AAA supplies had shrunk. More than

just getting the sign right, the table shows that our calibrated model can also capture the

magnitude of the spreads, and their reversal.25

Having shown that our model can quantitatively capture the change in AA-AAA

spreads following the big reduction in the supply of AAA corporate bonds, for reason-

able choices of parameters that do not have clear empirical targets, we now perform the

inverse exercise: what would those parameters have to be in order to match the spreads

exactly? We have three parameters (θ, π, and η) and two targets (the AA-AAA spread in

the earlier and later periods). Since we have an extra degree of freedom, we fix a value of

the bargaining power θ and let our model (and the data) tell us what the implied default

probability and scale elasticity should be.

The results of this exercise are shown in Table 3. For θ < 0.6, no exact match is

possible, reflecting the fact that low values of θ result in low liquidity premia (and thus

low power for our model). For θ > 0.6, our model can match the data perfectly, up to

θ→1 in the limit. The levels of π and η adjust as we vary θ: π in order to match the level

of the spreads (since lower π, everything else equal, increases the spread via the default

premium), and η in order to match the size of the change (since η governs how sensitive

the spread is to the difference in bond supplies).

The resulting parameter values are all plausible; the most novel and interesting one

is the scale elasticity of the matching function (which to our knowledge has never been

estimated for financial markets). Our calibrated value of η ranges from 0.069 to 0.212,

which corresponds to an elasticity of the matching function with respect to market size

of [1.069, 1.212]. This can be interpreted as saying that if the measure of traders in an

25 Our calibration implies that q0A/q
∗ = 0.8886 and q0B/q

∗ = 0.8922 for the 2004-2011 period and
q0A/q

∗ = 0.8839 and q0B/q
∗ = 0.8869 for the 2012-2018 period. These numbers are significantly higher

than 0.5, which is the threshold below which the combined money holdings of the C-type and the N-type
are not sufficient to purchase q∗. (Given the take-it-or-leave-it assumption in the DM, q0j coincides with
the real balances of an agent specializing in asset j; see Equation (A.10).) This verifies our claim, made on
page 19, that the range for which m+ m̃ < m∗ is not relevant for the analysis.
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OTC market (buyers and sellers) increases by 1%, overall matches increase by 1.069% to

1.212% – or, equivalently, the matching probabilities for individual traders increase by

0.069% to 0.212%. Quantitatively, the estimates in this range are closer to CRS than to

the congestion-free matching functions employed in most of the finance search literature

(which our formulation nests for η = 1; e.g., Duffie et al., 2005, Vayanos and Wang, 2007,

and Vayanos and Weill, 2008). But they are still robustly different from CRS, enough so

that an asset class in dramatically smaller supply than a competitor – for example, AAA

bonds versus AA bonds, or Swiss bonds compared to German or Italian ones – can end

up being substantially less liquid in equilibrium.

42



6 Conclusion

We argue that understanding the link between an asset’s safety and its liquidity is crucial.

To this end, we present a general equilibrium model where asset safety and asset liquidity

are well-defined and distinct from one another. Treating safety as a primitive, we examine

the relationship between an asset’s safety and liquidity. We show that the commonly held

belief that “safety implies liquidity” is generally justified, but there may be exceptions.

In particular, we highlight that a safe asset in scarce supply may be less liquid than a

less-safe asset in large supply. Next, we calibrate our model to rationalize the puzzling

observation that AAA corporate bonds in the U.S. are less liquid than (the riskier) AA

corporate bonds, and show that our model can explain this reversal as resulting from a

recent decrease in the relative supply of AAA bonds. Finally, and contrary to a recent

literature on the role of safe assets, we show that in our model increasing the supply of

the safe asset is not always beneficial for welfare.
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Data Availability

Data and codes replicating the tables and figures in this article can be found in Geromicha-

los, Herrenbrueck, and Lee (2022) in the Harvard Dataverse, https://doi.org/10.7910/

DVN/ZS00JR.
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Description Value

SA supply of AAA corporate bonds in the “before” period 0.0109
supply of AAA corporate bonds in the “after” period 0.0049

SB supply of AA corporate bonds in the “before” period 0.0477
supply of AA corporate bonds in the “after” period 0.0445

M money supply 1
i nominal interest rate on an illiquid bond (quarterly) 1.75%
ℓ fraction of C-type agents 0.5
σ elasticity of marginal utility 0.34
ρ recovery rate in case of default 0.4
π 1− default probability 0.996
θ relative bargaining power of C-types 0.8
η elasticity of the OTC matching function 0.1

Table 1: Key parameter values
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2004-2011 2012-2018 Change

AAA supply / M , observed 0.0109 0.0049 −55%
AA supply / M , observed 0.0477 0.0445 −7%
Spread AA-AAA (%), observed 0.2245 −0.0409 −0.2654

Spread AA-AAA (%), predicted 0.1961 −0.0648 −0.2609

Table 2: Prediction of the model with Table 1 parameters
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θ π η

0.6 0.9949 0.212
0.7 0.9957 0.135
0.8 0.9958 0.103
0.9 0.9958 0.083

0.99 0.9956 0.069

Table 3: Combinations of θ, π, and η that result in an exact match of our model to the
observed AA-AAA spreads in the “before” and “after” periods
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Figure 2: C-types’ incentive to deviate and N-types’ optimal entry choice, given eC , for
the case of CRS

Notes: The figure depicts the function G(eC) ≡ S̃CA−S̃CB (left panel) and the optimal response of N-types,
enN (right panel), as functions of aggregate eC , assuming CRS in matching (η = 0). Equilibrium entry is
illustrated for three levels of asset supply SA, keeping the supply of asset B constant. The parameters used
in the figure are: M = 1, i = 0.1, ℓ = 0.5, θ = 0.5, π = 0.95, SA = {0.05, 0.09, 0.14}, SB = 0.14, with log
utility. We refer to the corner with eC = 0 (all C-types are specializing in asset B) as the B-corner, and the
corner with eC = 1 (all C-types are specializing in asset A) as the A-corner.
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Figure 3: C-types’ incentive to deviate and N-types’ optimal entry choice, given eC , for
the case of IRS

Notes: The figure depicts the function G(eC) ≡ S̃CA−S̃CB (left panel) and the optimal response of N-types,
enN (right panel), as functions of aggregate eC , assuming IRS in matching (η = 0.3). Equilibrium entry is
illustrated for three levels of asset supply SA, keeping the supply of asset B constant. The parameters used
in the figure are: M = 1, i = 0.1, ℓ = 0.5, θ = 0.5, π = 0.95, SA = {0.05, 0.09, 0.14}, SB = 0.05, with log
utility. We refer to the corner with eC = 0 (all C-types are specializing in asset B) as the B-corner, and the
corner with eC = 1 (all C-types are specializing in asset A) as the A-corner.
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Figure 4: Liquidity premia as functions of π

Notes: The figure depicts the liquidity premia of assets A,B as functions of π, assuming symmetric asset
supplies. The left panel illustrates the case of a CRS matching technology, and the right panel represents
the the case of IRS (η = 0.5). The parameters used in the figure are: M = 1, i = 0.1, ℓ = 0.5, θ = 0.5,
SA = SB = 0.05, with log utility.

55



0
0

0
0

0
0

0
0

0
0

0
0

0.10.10.1

0.10.10.1

0.20.20.2

0.20.20.2

0.30.30.3

0.30.30.3

0.50.50.5

0.50.50.5

111

111

1.51.51.5

1.51.51.5

SASASA

SASASA

SBSBSB

η = 0 η = 0.07 η = 0.14

η = 0.21 η = 0.28 η = 0.35

LA

LB
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Notes: The figure depicts the liquidity premia of assets A and B as functions of SB , for a constant SA, and
for varying degrees of IRS. The dashed vertical line indicates the (fixed) supply of asset A. The parameters
used in the figure are: M = 1, i = 0.1, ℓ = 0.5, θ = 0.5, π = 0.95, SA = 0.05, with log utility.
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Notes: The figure depicts the sell-probability, αn
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NB , in the secondary market
for asset B, in the normal state, as a function of SB (and for varying degrees of IRS). The dashed vertical
line indicates the (fixed) supply of asset A. The parameters used in the figure are: M = 1, i = 0.1, ℓ = 0.5,
θ = 0.5, π = 0.95, SA = 0.05, with log utility.
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Figure 7: Liquidity premia

Notes: The figure depicts the liquidity premia of assets A and B as functions of SB , for a constant SA, and
for η = 0.2. The dashed vertical line indicates the (fixed) supply of asset A. The parameters used in the
figure are: M = 1, i = 0.1, ℓ = 0.5, θ = 0.5, π = 0.95, SA = 0.05, with log utility.
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Figure 8: Safe asset supply and welfare

Notes: The figure depicts equilibrium welfare as a function of SA, for various values of η, including η = 0
(CRS). The dashed vertical line indicates the (fixed) supply of asset B. The parameters used in the figure
are: M = 1, i = 0.1, ℓ = 0.5, θ = 0.5, π = 0.95, SB = 0.05, with log utility.
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Figure 9: Historical yields of AAA/AA corporate/municipal bonds

Notes: The data on municipal bonds comes from Standard & Poor’s, and the data on corporate bonds comes
from Federal Reserve Economic Data (FRED). The original data is on a daily base, but, to make the graphs
more legible, it is converted to a monthly base. The graphs show the historical yields for the past 10 years.
Sources: FRED; Standard & Poor’s.
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