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1 Introduction

Why do U.S. Treasuries sell at higher prices than corporate or municipal bonds with similar
characteristics, even after controlling for safety?1 A popular answer is “due to their liquidity”.
More precisely, the Treasury sells its bonds at a premium because investors expect to be able to
(re)sell these bonds easily in the secondary market and are, thus, willing to pay higher prices in
the primary market.2 While this is a plausible explanation, some important questions remain.
Why are the secondary markets for other types of bonds less liquid than the one for Treasuries?
Is it hard(er) for sellers to find buyers due to some hardwired market friction (e.g., a poorly
organized interdealer network)? Or, are there not enough buyers drawn to those markets to
whom I could sell my bonds – and if so, why? Or, perhaps finding trading partners is not so
hard, but there are not enough bonds to go around in the market? Finally, how do these candi-
date explanations (and their interaction) affect asset prices and liquidity in general equilibrium?

To answer these questions, we develop a model of the joint determination of the supply of
potentially liquid assets and their realized liquidity. Key to our model is the fact that this liq-
uidity does not only depend on the (exogenous) characteristics of the market an asset trades in,
but also on the (endogenous) decision of agents to visit that market. Our model has three main
ingredients. The first is an empirically relevant concept of asset liquidity: agents can liquidate
assets for money in Over-the-Counter (OTC) secondary markets which, as in Duffie, Gârleanu,
and Pedersen (2005), are characterized by search and bargaining. This implies that assets are
imperfect substitutes for money and have, generally, positive liquidity premia. The second in-
gredient of our model is an entry decision by the agents. Each asset trades in a distinct OTC
market, and agents choose to visit the market where they expect to find the best terms. The
third ingredient is strategic interaction among asset issuers: the agencies that issue assets real-
ize that equilibrium asset prices – thus, the rate at which they can borrow – depend not only
on their own decisions but also on those made by issuers of similar (hence, competing) assets.
Specifically, we focus on two issuers of assets who play a differentiated Cournot game, where,
crucially, the product (asset) differentiation stems from differences in the microstructure of the
secondary market where each asset trades.

As a starting point, we study the endogenous determination of OTC market participation,
keeping asset supplies fixed. This can be seen as the subgame following the supply decisions
of issuers, and it provides a number of new insights on its own. Agents receive an idiosyncratic
shock that determines whether they will need, ex-post, additional liquidity in the secondary
market (i.e., sell assets) or whether they will be the providers of that liquidity (i.e., buy assets).

1 For a thorough discussion of this stylized fact, see Krishnamurthy and Vissing-Jorgensen (2012).
2 For instance, former Assistant Secretary of the U.S. Treasury, Brian Roseboro, points precisely in this direc-

tion: “A deep, liquid, and resilient secondary market serves our goal of lowest-cost financing for the taxpayer by
encouraging more aggressive bidding in the primary market.” (A Review of Treasury’s Debt Management Policy, June
3, 2002, available at http://www.treas.gov/press/releases/po3149.htm.)
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An agent who turns out to be an asset seller can only visit one OTC market at a time; since,
typically, assets are costly to own due to the liquidity premium, agents choose to ‘specialize’
ex-ante in asset A or B. Unlike sellers, who must take into account the cost of holding a partic-
ular asset, the asset buyers make their market choice in a more ‘elastic’ way since their money is
good to buy any asset. As a result, when one of the markets, say market A, has any kind of ad-
vantage – an exogenous matching advantage or simply offering bigger surpluses because there
are more A-assets to be traded – asset buyers rush into that market more eagerly than sellers. In
turn, this implies that the trade probability in that market for sellers increases by far more than
that for buyers. Crucially, it is the sell-probability that affects the issue price, because someone
who buys an asset (in the primary market) cares about the ease of selling it later. Through this
channel, small differences in market microstructure can be magnified into a big endogenous liq-
uidity advantage for one asset, even with constant returns to scale (CRS) in the OTC matching
technology. And with a modest degree of increasing returns to scale (IRS), demand curves can
be upward sloping, because an asset in large supply is likely to be more liquid.

Next, we study the duopoly game between the issuers, who realize that the outcome of the
subgame determines the demand for their assets. When the matching technology exhibits CRS,
asset supplies tend to be strategic substitutes. In this case, equilibrium issue sizes are low, and
the prices of both assets include liquidity premia. When the matching technology exhibits IRS,
asset supplies tend to be strategic complements. This promotes aggressive competition among
issuers, in the sense that equilibrium issue sizes can be large, and that equilibria of the sub-
game tend to be in a corner in which only one of the two OTC markets operates. Effectively,
one of the assets ends up illiquid. Therefore, our paper does not only endogenize the supply of
(potentially) liquid assets, but also their degree of liquidity; this is precisely why we have been
careful about reminding the reader that assets are ‘potentially’ liquid.

We also study how changes in the exogenous market microstructure affect equilibrium play,
and, consequently, asset prices and liquidity premia. More precisely, letting δi, i = A,B, denote
the matching efficiency in the OTC market for asset i, we fix δA and study the effect of changes
in δB. Suppose the matching process is CRS and δB falls slightly below δA; in this case, issuer A
increases her asset supply and issuerB decreases it, but the strategic pattern of a Cournot game
is maintained. The exogenous liquidity advantage of asset A is magnified by the entry choices
of agents, which, in turn, feeds back into a rising (falling) liquidity premium on asset A (B).
As δB declines further, there comes a point at which issuer A has an incentive to boost up her
supply and drive B out of the secondary market altogether. At that point asset B becomes fully
illiquid. As δB falls even further, the threat of competition by asset B becomes so insignificant
that issuer A practically turns into a monopolist in the supply of liquid assets.

With a degree of IRS in the matching technology, this process is accelerated. For a reason-
able parametrization of the model, we show that asset B will become completely illiquid even
if the matching function in market B is almost equally efficient as the one in market A (say,
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δB = 0.99 δA), and there is only a tiny amount of IRS in the matching function.3 If one were to
look at these numbers, one might infer that asset B cannot be much less liquid than asset A.
This conclusion would be mistaken, because it would be based only on the exogenous factors.
What is more important is that agents endogenously choose to concentrate their trade in mar-
ket A because they expect other agents will do the same – and, reinforcing this, because both
issuers have an incentive to compete for this concentration by issuing large (enough) amounts.

The model has a number of fruitful applications. The first is the superior liquidity of U.S.
Treasuries over equally safe corporate or municipal bonds. One may argue that this stylized fact
has an easy explanation: the secondary market for Treasuries is more well-organized (which in
our model would be captured by a more efficient matching technology). However, the relative
illiquidity of corporate or municipal bonds has been well-documented for many decades. If the
key behind this illiquidity was just some poorly organized secondary markets, one wonders
why the issuers of these bonds have not taken steps to improve the efficiency of these markets,
which would lower the rate at which they can borrow. Hence, it seems unlikely that the styl-
ized fact in question can be purely explained by differences in market efficiency. Our model can
offer a deeper explanation: perhaps Treasuries have a small exogenous advantage over other
types of bonds, but this is amplified into a large endogenous liquidity advantage by the fact
that investors choose to concentrate their trade into the secondary market for Treasuries, rather
than get exposed to the liquidity risk associated with trading other types of bonds.4

Our model can also shed some light on the well-documented empirical observation that for
many types of bonds, there is a positive relationship between bond supply and the realized
liquidity premium (see Hotchkiss and Jostova, 2007, and Alexander, Edwards, and Ferri, 2000,
for the case of corporate bonds). This relationship also seems to be embraced by practitioners:
common advice given to first-time sovereign bond issuers is that “the issue should be large
enough to assure market liquidity” (Das, Polan, and Papaioannou, 2008), and in May 1998,
the U.S. Treasury announced that it would discontinue issuance of 3-year notes and reduce the
issuance frequency of 5-year notes from monthly to quarterly “in order to continue to assure
large, liquid issues” (quote reproduced from Fleming, 2002). As we have already seen, our
model suggests that with even a slight degree of IRS in matching, an increase in the supply of
an asset can lead to a higher liquidity premium.

Furthermore, our model can help explain how consolidating secondary markets would be
beneficial for asset issuers, a belief commonly held among practitioners. In a recent report on

3 Specifically, the elasticity of the number of matches to scale (i.e., the total number of entrants) only has to be
1.02 or larger. For context, a scale elasticity of 1 is CRS, and most theoretical finance papers use a congestion-free
matching function with scale elasticity 2. That is, our model can be a mix of 98% CRS and 2% congestion-free
matching, yet outcomes look like those obtained with the latter – precisely because competition between the issuers
makes it so.

4 For instance, Oehmke and Zawadowski (2016) and Helwege and Wang (2016) report that many investors
choose to not participate in the corporate bonds markets altogether, because they are highly concerned about the
risk of not being able to liquidate their bonds quickly and at good terms, if such a need arises.
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the corporate bond market structure (BlackRock, 2014), the authors make a number of proposals
that they believe could increase the “deteriorating” liquidity of corporate bonds. One of their
main suggestions is that regulators should work towards consolidating the secondary markets
for corporate bonds. This view is supported by the empirical findings of Oehmke and Za-
wadowski (2016), who find that “the fragmented nature of the corporate bond market impedes
its liquidity” (emphasis added). While these papers touch upon some features of corporate
bonds that our model abstracts from (such as “standardization”), they are clearly implying that
merging secondary markets would improve the bonds’ liquidity. Our theory predicts precisely
that. Specifically, with even a slight degree of IRS in matching, a merging of secondary markets
would increase the liquidity premia enjoyed by the issuers (in the primary market), because the
market consolidation reduces the investors’ risk of not being able to sell.

Finally, our model delivers some important results regarding welfare. First, and most im-
portantly, there exists no monotonic relationship between welfare and “liquidity” (for any mea-
sure of liquidity we could choose). Second, unlike output, social welfare tends to be maxi-
mized for small-to-intermediate quantities of liquid assets. This alone does not tell us whether
a monopoly or a Cournot duopoly of liquid assets would be superior; each is possible, depend-
ing on parameters. However, it does tell us that aggressive competition for secondary market
liquidity, where issuers issue large amounts and drive liquidity premia to zero, is suboptimal.
Consequently, market segmentation and exogenous liquidity differences can be good for wel-
fare because they tend to discourage such aggressive competition.

The present paper is related to a branch of the recent literature, often referred to as “New
Monetarism” (see Lagos, Rocheteau, and Wright, 2017), that has highlighted the importance
of asset liquidity for the determination of asset prices. See for example Geromichalos, Licari,
and Suárez-Lledó (2007), Lagos and Rocheteau (2008), Lester, Postlewaite, and Wright (2012),
Nosal and Rocheteau (2013), Andolfatto and Martin (2013), Andolfatto, Berentsen, and Waller
(2013), and Hu and Rocheteau (2015). In these papers assets are ‘liquid’ because they serve
as a medium of exchange in frictional decentralized markets.5 In some other papers, liquidity
properties stem from the fact that assets serve as collateral, as in Venkateswaran and Wright
(2013) and Andolfatto, Martin, and Zhang (2015).6 The majority of this literature has studied
asset liquidity (and prices) under the simplifying assumption that asset supply is fixed. Recent
exceptions include Rocheteau and Rodriguez-Lopez (2014) and Branch, Petrosky-Nadeau, and
Rocheteau (2016). Moreover, Bethune, Sultanum, and Trachter (2017) consider an environment
with asset issuance and decentralized secondary markets, but they focus on efficiency and pol-

5 Consequently, in most of these papers, assets compete with money as media of exchange. In recent work,
Fernández-Villaverde and Sanches (2016) extend the Lagos and Wright (2005) framework to study the interesting
question of competition among privately issued electronic currencies, such as Bitcoin and Ethereum.

6 Some papers within this literature have shown that adopting models where assets are priced both for their
role as stores of value and for their liquidity may be the key to rationalizing certain asset pricing-related puzzles.
See Lagos (2010), Geromichalos, Herrenbrueck, and Salyer (2016), and Herrenbrueck (2019b).
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icy rather than liquidity. Our paper is also related to Caramp (2017) who endogenizes asset
creation with a focus on asset quality and asymmetric information.

A key difference of our paper with the works mentioned so far is that here asset liquidity
is indirect. Assets never serve as media of exchange (or as collateral) to purchase consumption.
Their liquidity stems from the fact that agents can sell them for money in a secondary market.
This idea is exploited in a number of recent papers, including Geromichalos and Herrenbrueck
(2016), Berentsen, Huber, and Marchesiani (2014, 2016), Herrenbrueck (2019a), Mattesini and
Nosal (2016), and Geromichalos, Herrenbrueck, and Lee (2018). As argued earlier, we believe
that this approach is empirically relevant for a large class of financial assets. A common fea-
ture of these papers is that a secondary asset market allows agents to rebalance their liquidity
after an idiosyncratic expenditure need has been revealed. This idea draws upon the work of
Berentsen, Camera, and Waller (2007), where the channeling of liquidity takes place through a
competitive banking system. Our work is also related to Lagos and Zhang (2015), but in that
paper agents use money to purchase assets (rather than goods) in an OTC financial market.

Our work is also related to the literature initiated by the seminal work of Duffie et al. (2005),
which studies how frictions in OTC financial markets affect asset prices and trade. A non-
exhaustive list of such papers includes Vayanos and Wang (2007), Weill (2007, 2008), Vayanos
and Weill (2008), Lagos and Rocheteau (2009), Lagos, Rocheteau, and Weill (2011), Afonso and
Lagos (2015), Üslü (2015), Chang and Zhang (2015). Our paper is uniquely distinguished from
all these papers, starting with the very concept of liquidity: we have a monetary model where
agents sell assets for cash after learning of a consumption opportunity, while in those papers,
agents differ in the utility flow derived from holding an asset and pay for assets with transfer-
able utility. Furthermore, we characterize the strategic incentives facing issuers of potentially
liquid assets, and thereby endogenize the supply of such assets in addition to their liquidity.

Our paper is also related to a strand of the Industrial Organization literature that studies the
effect of secondary markets for durable goods on the producers’ pricing decisions. Examples
include Rust (1985, 1986). In these papers, the existence of a secondary market, where buyers
could sell the durable good in the future, affects the pricing decisions of sellers now through
affecting the buyers’ willingness to pay for the good.7 In our model, if secondary markets were
shut down (so that assets have to be held to maturity), agents would be only willing to buy
assets at their fundamental value. The existence of secondary markets endows assets with (in-
direct) liquidity properties, which, in turn, allows issuers to borrow funds at lower rates (i.e.,
sell bonds at a price that includes a liquidity premium).

The paper is organized as follows. Section 2 describes the model. In Section 3, we study
the economy with exogenous asset supplies, and in Section 4, we endogenize asset supplies by
characterizing the game between asset issuers. Section 5 analyzes a special case of our model

7 Within the context of financial rather than commodity markets, this idea is also exploited by Geromichalos
et al. (2016) and Arseneau, Rappoport, and Vardoulakis (2015).
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where assets are perfect substitutes and we can obtain closed-form solutions, and Section 6
concludes. Appendix A.1 discusses empirical counterparts of our modeling choices, and Ap-
pendix A.2 contains some technical details of the model. Finally, the Web Appendix contains
several extensions of our analysis – only one asset issuer being strategic, one asset issuer being
a Stackelberg leader, and one asset issuer having a higher cost of creating assets than the other
– and an analytical characterization of the equilibria in our model.

2 The model

Time is discrete and the horizon is infinite. Each period consists of three sub-periods where
different economic activities take place. In the first sub-period, two distinct OTC financial mar-
kets open, denoted by OTCj , j = {A,B}. Agents who hold assets of type j can sell them for
money in OTCj . One could think of asset A as T-Bills and asset B as corporate AAA bonds. In
the second sub-period, agents visit a decentralized goods market where trade is bilateral, and
agents are anonymous and lack commitment. We refer to this market as the DM. Due to the
aforementioned frictions, trade necessitates a medium of exchange in the DM, and this role can
be played only by money. During the third sub-period, economic activity takes place in a cen-
tralized market, which is similar in spirit to the settlement market of Lagos and Wright (2005)
(henceforth, LW). We refer to this market as the CM. There are two permanently distinct types
of agents, buyers and sellers, named by their role in the DM, and the measure of both types of
agents is normalized to the unit. Agents live forever. There are also two agencies, j = {A,B},
that issue asset j in its respective primary market which opens within the third sub-period.

All agents discount the future between periods (but not sub-periods) at rate β ∈ (0, 1). Buy-
ers consume in the DM and CM sub-periods and supply labor in the CM sub-period. Their
preferences within a period are given by U(X,H, q) = X − H + u(q), where X,H represent
consumption and labor in the CM, respectively, and q consumption in the DM. Sellers consume
only in the CM, and they produce in both the CM and the DM. Their preferences are given by
V(X,H, h) = X − H − q, where X,H are as above, and q stands for units of production in the
DM. We assume that u is twice continuously differentiable with u′ > 0, u′(0) = ∞, u′(∞) = 0,
and u′′ < 0. Let q∗ denote the optimal level of production in a bilateral meeting in the DM, i.e.,
q∗ ≡ {q : u′(q∗) = 1}. The issuers of assets are only present in the CM. Their preferences are
given by Y(X,H) = X − H , where X,H are as above. The issuers also discount the future at
rate β. What makes them special is that they can issue assets that potentially carry liquidity
premia, thus allowing them to obtain net profits out of this operation.8

8 Alternatively, one could assume that the issuers have to finance certain expenditures and, hence, have to
borrow at least a certain amount, but can choose to borrow more if doing so is profitable. As long as that lower
bound is not too large, our results would remain valid under the alternative specification.
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We now provide a detailed description of the various sub-periods. In the third sub-period,
all agents consume and produce a general good or fruit. All agents (including the issuers) have
access to a technology that transforms one unit of labor into one unit of the fruit. Agents can
choose to hold any amount of money which they can purchase at the ongoing price ϕt (in real
terms). The supply of money is controlled by the monetary authority, and it evolves accord-
ing to Mt+1 = (1 + µ)Mt, with µ > β − 1. New money is introduced, or withdrawn if µ < 0,
via lump-sum transfers to buyers in the CM. Money has no intrinsic value, but it possesses all
the properties that make it an acceptable medium of exchange in the DM (e.g., it is portable,
storable, and recognizable by agents). Agents can also purchase any amount of asset j at price
pj , j = {A,B} (in nominal terms). These assets are one-period nominal bonds: each unit of
(either) asset purchased in period t’s CM pays one dollar in the CM of t + 1.9 Let the supply
of the assets be denoted by (At, Bt). In Section 3, we will treat them as fixed; in Section 4, they
will be chosen strategically by the issuers. Each issuer chooses the supply of her asset as a best
response to her rival’s action in order to maximize profits, realizing that both her own and her
rival’s assets provide indirect liquidity services to an asset purchaser.

After making their portfolio decisions in the CM, buyers receive an idiosyncratic consump-
tion shock: a measure ` < 1 of buyers will have a desire to consume in the forthcoming DM.
We refer to these buyers as the C-types, and to the remaining 1− ` buyers as the N-types (“not
consuming”). Since buyers did not know their type when they made their portfolio choices, N-
types will typically hold some cash that they will not use in the current period, while C-types
may find themselves short of cash (since carrying money is costly). The OTC round of trade is
placed after the idiosyncratic uncertainty has been resolved, but before the DM opens to allow
a reallocation of money into the hands of those who value it most. OTC financial markets are
segmented: an agent who wants to sell or purchase assets is free to enter either OTCA or OTCB,
but she must choose one market at a time.10 Hence, coordination is extremely important, and
agents will pick the market where they expect to find better trading conditions.

Once C-types and N-types have decided which market they wish to enter, a matching func-
tion, fj(Cj, Nj), brings together sellers (C-types) and buyers (N-types) of assets in the OTCj , in
bilateral matches. Throughout the paper we use the specific functional form:

fj(x, y) = δj

(
xy

x+ y

)1−ρ

(xy)ρ ,

with δj ∈ [0, 1] and ρ ∈ [0, 1], and thus fj(x, y) ≤ min{x, y}. The term δj captures exoge-
nous efficiency factors in OTCj , such as the density of the dealer network. The term ρ ∈ [0, 1]

governs returns to scale in matching; for concreteness, notice that the elasticity of the number

9 Since the assets are nominal, in steady state their supply must grow at rate µ, too (see, for example, Berentsen
and Waller, 2011).

10 We discuss and justify this assumption in Appendix A.1. Furthermore, perfectly integrated markets are
equivalent to one special case of our model, explored in Section 5.
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CMt-1

   work, consume, 

purchase assets A,B

OTCA,t

OTCB,t

C-types sell asset A to 

   N-types for money

C-types sell asset B to 

   N-types for money

DMt

C-types purchase DM 

    good with money

CMt

   work, consume, 

purchase assets A,B

Idiosyncratic Consumption 

         Shock is Revealed

C-types and N-types choose 

        to visit OTCA or OTCB

Figure 1: Timing of events.

of matches with respect to scale, keeping the ratio of buyers to sellers fixed, is 1 + ρ. This func-
tional form allows us to study both the case of CRS (ρ = 0, scale elasticity of 1) and IRS (ρ > 0,
scale elasticity exceeding 1). Within any match in either of the OTC markets the C-type makes
a take-it-or-leave-it (TIOLI) offer with probability θ ∈ (0, 1), otherwise the N-type does.

The second sub-period is the standard decentralized goods market of the LW model. C-type
buyers meet bilaterally with sellers and negotiate over the terms of trade. Exchange must take
place in a quid pro quo fashion, and only money can serve as a medium of exchange.11 Since all
the interesting insights of the paper follow from agents’ interaction in the OTC round of trade,
we wish to keep the DM as simple as possible. To that end, we assume that all C-type buyers
match with a seller, and that in any match the buyer makes a TIOLI offer to the seller.

Figure 1 summarizes the timing of the main actions in the model. It is important to high-
light that the secondary OTC markets are completely separate from the primary markets where
assets are first issued. Nevertheless, the microstructure of the secondary markets, summarized
by the parameters δj, ρ, and θ, will determine the liquidity properties of the assets and, conse-
quently, their selling price in the primary market.

11 Here we shall make this an assumption of the model. However, a number of recent papers in the monetary-
search literature, such as Rocheteau (2011) and Lester et al. (2012) do not place any restrictions on which objects
can serve as media of exchange and show that, under asymmetric information, fiat money will endogenously arise
as a superior medium of exchange, thus, providing a micro-founded justification for our assumption.
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3 The economy with exogenous asset supply

In this section we analyze the economy, treating the supplies of assets (A,B) as given. The task
of endogenizing the asset supplies is carried out in Section 4.

In order to streamline the analysis, we relegate the details of defining the value functions
and characterizing the terms of trade in the OTC markets and the DM to Appendix A.2. Here
we include a summary. All agents in the economy have linear preferences over labor and con-
sumption goods in the CM, which will induce linear value functions in the CM, and make
a number of economic decisions easy to characterize. First, consider a DM meeting between
a seller and a C-type buyer who brings a quantity m of money. The buyer will either buy the
first-best quantity q∗, or, if her money is not enough, spend all of it on the quantity q = ϕm < q∗.
Second, consider a meeting in the OTC market for asset j ∈ {A,B}, where the N-type brings
a quantity m̃ of money, and the C-type brings a portfolio (m, dj) of money and asset j. With
probability 1−θ, the N-type makes a TIOLI offer, in which case she buys the C-type’s assets and
compensates him with the least amount of money that the C-type will accept. With probability
θ, the C-type makes a TIOLI offer, in which case he receives the N-type’s money and compen-
sates her with assets valued at par.12

What is the probability of matching in an OTC market for an individual agent? First, let
e
C
∈ [0, 1] and e

N
∈ [0, 1] denote the fractions of C-types and N-types, respectively, who choose

to enter OTCA. Then, the measure of asset sellers and buyers in OTCA is given by e
C
` and

e
N

(1−`), respectively, and the measure of asset sellers and buyers in OTCB is given by (1−e
C

)`

and (1 − e
N

)(1 − `). Letting αij ∈ [0, 1] denote the matching probabilities for agents of type
i = {C,N} in OTCj , j = {A,B}, we have:

αCA ≡
fA
(
e
C
`, e

N
(1− `)

)
e
C
`

, αCB ≡
fB
(
(1− e

C
)`, (1− e

N
)(1− `)

)
(1− e

C
)`

, (1)

αNA ≡
fA
(
e
C
`, e

N
(1− `)

)
e
N

(1− `)
, αNB ≡

fB
(
(1− e

C
)`, (1− e

N
)(1− `)

)
(1− e

N
)(1− `)

. (2)

12 In OTC trade, three kinds of outcomes are possible: (a) the C-type’s asset holdings could limit the trade; (b)
the N-type’s money holdings could limit the trade; (c) or both are so large that the pooled money is enough to
purchase the first-best DM quantity (m+ m̃ > q∗/ϕ), and the C-type has enough assets to compensate the N-type.
In Geromichalos and Herrenbrueck (2016), we showed that assets can only be priced (in the CM) at a determinate
liquidity premium if case (a) applies in the corresponding OTC market. Case (c) is also relevant as the boundary of
case (a), where an asset becomes abundant and the liquidity premium converges to zero. Case (b), however, only
complicates the general equilibrium analysis. Since it does not feature a positive liquidity premium, and since our
interest is in asset issuers who seek to exploit such a premium, we exclude case (b) from our analysis. This is done
by assuming that inflation is not too large, so that all agents carry at least half of the first-best amount of money.
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3.1 Optimal behavior

As shown in Appendix A.2, the sellers’ decisions in this model are trivial. To that end, in what
follows we will use the term ‘agents’ to refer to buyers, i.e., the agents who consume in the DM
and make interesting portfolio decisions. In the OTC market, these agents will take on roles as
‘asset sellers’ and ‘asset buyers’ depending on the outcome of their consumption shock (C or
N, respectively). The ‘seller’-agents who produce and sell goods in the DM will not come up
again in the main text.

As is standard in models that build on LW, all agents choose their optimal portfolio indepen-
dently of their trading histories in preceding markets. This result follows from the “no-wealth-
effects” property, which, in turn, stems from the quasilinear preferences. What is new here
is that in addition to choosing an optimal portfolio of money and assets, (m̂, d̂A, d̂B), agents
also choose which OTC market they will enter in order to sell or buy assets once their type
has been revealed. The agent’s choice can be analyzed with an objective function, denoted by
J(m̂, d̂A, d̂B), which summarizes the cost and benefit from choosing portfolio (m̂, d̂A, d̂B). To
obtain J , substitute the values of trading in the OTC markets and in the DM (Equations A.4-
A.8, derived in the appendix) into the maximization operator of the CM value function (Equa-
tion A.1). After using the linearity of the value function itself (Equation A.2), we can drop all
terms that do not depend on the choice variables (m̂, d̂A, d̂B) to obtain the objective function:

J(m̂, d̂A, d̂B) = −ϕ
(
m̂+ pAd̂A + pBd̂B

)
+ βϕ̂

(
m̂+ d̂A + d̂B

)

+ β`

u (ϕ̂m̂)− ϕ̂m̂+ max

{
θαCASCA︸ ︷︷ ︸

enter A

, θαCBSCB︸ ︷︷ ︸
enter B

} , (3)

so that the optimal portfolio choice is fully described by max J , where the current prices of
money and assets, (ϕ, pA, pB), and the future price of money, ϕ̂, are taken as given.

The interpretation of the objective function is intuitive. The first term represents the cost that
the agent needs to pay in order to purchase the portfolio (m̂, d̂A, d̂B) in the CM, and the second
term represents the benefit from selling these assets in the CM of the next period. If one were
to shut down the DM market (say, by setting ` = 0), there would be no liquidity considerations
and the agent’s objective function would consist only of these two terms. The third term reveals
that with probability ` the agent will be a C-type in the next period. In this case she can use her
money (m̂) to purchase consumption in the DM (generating a net surplus equal to u [ϕ̂m̂]−ϕ̂m̂),
and she can enter OTCj , j = A,B, in order to acquire more money by selling her assets (d̂A or
d̂B). In the last expression, the terms SCj represent the surplus for the C-type in OTCj , but
the agent will actually enjoy this surplus only if she gets to match in that market and make
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the TIOLI offer, an event that occurs with probability θαCj .13 Exploiting the OTC bargaining
solution (i.e., Lemma A.2) and Equation (A.9), one can verify that, for j = {A,B}:

SCj =


u(q∗)− u(ϕ̂m̂)− q∗ + ϕ̂m̂, if d̂j > m∗ − m̂,

u(ϕ̂m̂+ ϕ̂d̂j)− u(ϕ̂m̂)− ϕ̂d̂j, otherwise,
(4)

where the condition d̂j > m∗ − m̂ states that in this case the agent’s asset holdings are “abun-
dant”, i.e., they allow her to reach the first-best amount of money, m∗, through OTC trade.

Two important observations are in order. First, while we have only imposed an exogenous
segmentation assumption on the OTC markets, an endogenous segmentation will arise in the
primary markets: i.e., agents will typically choose to purchase only asset A or assetB in the CM.
In equilibrium, assets will trade at a premium, and agents will only pay this premium if they
expect to sell the asset in the OTC. Since they can only enter one OTC (and anticipate having to
choose eventually), they will choose ex-ante (i.e., in the CM), to “specialize” in asset A or B.14

This, in turn, implies that an agent’s portfolio choice is intertwined with the choice of which
OTC market to enter in case she turns out to be a C-type. For instance, we shall see that agents
who choose to trade in a less liquid OTC market will self-insure against the liquidity shock by
carrying more money.

The second important observation is that the agent’s choice of which market to enter if she
turns out to be an N-type is unrelated with her choice of asset specialization in the CM. This
is because the N-type’s asset and money holdings do not affect the bargaining solution in OTC
trade (see Lemma A.2). As a result, regardless of her asset choice which by the time the N-type
makes her OTC entry choice is sunk, this agent will enter OTCA only if:

(1− θ)αNASNA ≥ (1− θ)αNBSNB.

In the last expression, the terms SNj represent the surplus for the N-type in OTCj . Exploiting
Lemma A.2 and equation (A.10), one can verify that, for j = {A,B},

SNj =


u(q∗)− u(ϕ̂m̃)− q∗ + ϕ̂m̃, if d̃j > [u(q∗)− u(ϕ̂m̃)]/ϕ̂ ,

ϕ̂m̃+ ϕ̂d̃j − u−1
[
u(ϕ̂m̃) + ϕ̂d̃j

]
, otherwise,

(5)

13 One may wonder why there is no (1− `)-term in the objective function. Does the N-type not generate value
by bringing money into the OTC? Yes, this is the case, as the full value function (Equation A.1) shows. But the
technical restriction (6), justified in Footnote 12, guarantees that the N-type’s money is never marginal in OTC
trade. Hence the N-branch can be dropped from the portfolio choice problem; the only decision to be made along
the N-branch is which OTC market to enter.

14 Agents may still hold the other asset if indifferent, i.e., if that asset is abundant or illiquid.
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where (m̃, d̃j) stand for the N-type’s expectation about the money and asset-j holdings, respec-
tively, that her trading partner, a C-type, will carry into OTCj . The condition d̃j > [u(q∗) −
u(ϕ̂m̃)]/ϕ̂ states that the asset holdings of the C-type are large enough to allow her post-OTC
money balances to reach the first-best amount, m∗.

3.2 Equilibrium

In steady state, the cost of holding money can be summarized by the parameter i ≡ (1+µ−β)/β;
exploiting the Fisher equation, this parameter represents the nominal interest rate on an illiquid
asset. For example, in any equilibrium it must be true that pj ≥ 1/(1 + i), j = {A,B}, since
otherwise there would be an infinite demand for the assets; however, the inequality could be
strict if the assets are liquid. The restriction µ > β− 1 translates into i > 0. We also assume that:

i < `(1− θ) [u′ (q∗/2)− 1] , (6)

a technical restriction. It ensures that q0j > q∗/2 for every agent, thus the N-type’s money will
never be the limiting factor in OTC trade. See our explanation in Footnote 12, and note that if
we did have q0j < q∗/2, the implied burden of the inflation tax would be enormous.

We have thirteen endogenous variables.15 First, we have the equilibrium real balances
{zA, zB} held by the agent who chooses to specialize in asset A or B (recall from the discus-
sion in Section 3.1 that an agent who chooses to trade in OTCA will typically make different
portfolio choices than one who chooses to trade in OTCB).

Next, we have the equilibrium quantities {q0A, q1A, q0B, q1B, q̃1A, q̃1B}. The first four repre-
sent the quantity of DM good purchased by a C-type agent who either did not trade in the OTC
market (indexed by 0), or who traded and made the TIOLI offer (indexed by 1), depending on
whether they chose to specialize in asset A or asset B. The last two terms (i.e., the q̃’s) represent
the quantity of DM good purchased by an agent who traded in her chosen OTC,A orB, but did
not get to make the TIOLI offer. The purchasing power of the C-type in the DM will depend on
whether she got to make the offer or not, and, naturally, we have q1j ≥ q̃1j , for all j.16

Next, we have the prices of the three assets {ϕ, pA, pB}. Finally, we have the entry choices
{e

C
, e

N
}, i.e., the fractions of C-types and N-types, respectively, who choose to enter OTCA.

We now show that seven out the thirteen endogenous variables can be derived from the
following six variables, {q0A, q1A, q0B, q1B, eC , eN}. First, we have zj = q0j , for j = {A,B}, since
the C-type who does not trade in the OTC can only purchase the amount of DM goods that her

15 This count excludes the terms of trade in the OTC markets, since they follow directly from the main endoge-
nous variables described in this section and Lemma A.2.

16 More precisely, we have q1j > q̃1j , unless the C-type’s asset holdings satisfy dj ≥ [u(q∗) − u(ϕm)]/ϕ. Then,
even if the N-type makes the offer the C-type can afford a money transfer of m∗ −m, and we have q1j = q̃1j = q∗.
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own real money holdings, zj , allow her to afford. Second, the price of money solves:

ϕM = e
C
q0A + (1− e

C
)q0B. (7)

This equation is the market clearing condition in the market for money. Third, the equilibrium
asset prices must satisfy the demand equations:17

pj =
1

1 + i

(
1 + ` αCjθ · [u′(q1j)− 1]

)
, for j = {A,B}. (8)

For future reference, notice that as long as q1j < q∗, the marginal unit of the asset allows the
agent to acquire additional money which she can use in order to boost her consumption in the
DM. In this case, the agent is willing to pay a liquidity premium in order to hold the asset. On
the other hand, if q1j = q∗, the term inside the square brackets becomes zero, and pj = 1/(1 + i),
which is simply the fundamental price of a one-period nominal bond.

Finally, the quantities consumed in the DM by agents who did not make the TIOLI offer in
the preceding OTC market satisfy:

q̃1A = min

{
q∗, u−1

(
u(q0A) + ϕ

A

e
C

)}
, (9)

q̃1B = min

{
q∗, u−1

(
u(q0B) + ϕ

B

1− e
C

)}
, (10)

where ϕ has been explicitly defined as a function of the variables q0j in (7). (These equations
are derived from substituting equilibrium variables into part (b) of Lemma A.2.)

The analysis so far establishes that if one had solved for {q0A, q1A, q0B, q1B, eC , eN}, then the
remaining seven variables could also be immediately determined. Hence, hereafter we refer
to these six variables as the “core” variables of the model. We now turn to the description of
the equilibrium conditions that determine the core variables. Throughout this discussion, recall
that the terms e

C
, e

N
are also implicitly affecting the arrival rates αCj .

First, the money demand equation for those specializing in asset j:

i = ` (1− αCjθ) · [u′(q0j)− 1] + ` αCjθ · [u′(q1j)− 1] , for j = {A,B}. (11)

Note that we have defined αij = 0 if there is no entry at all into market j. If that is the case, q0j
and q1j are still defined as limits even though nobody actually trades at those quantities.

Next, the OTC trading protocol links q0j and q1j . Consider for instance market A. The
bargaining solution, evaluated at equilibrium quantities, becomes:

17 These follow directly from obtaining the first-order conditions in the agent’s objective function, i.e., Equa-
tion (3), and imposing equilibrium quantities. Notice that the asset prices do not only depend on the variables q1j ,
but also on the equilibrium values of e

C
, e

N
which affect the arrival rates αCj ; see Equations (1).
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q1A = min

{
q∗, q0A +

ϕA

e
C

}
,

where ϕA/e
C

is the real value of assets that the C-type brings into OTCA.18 Even though the real
aggregate supply of asset A is ϕA, the agent under consideration holds more than the average
because some agents do not hold asset A at all (they specialize in asset B). After substituting
the price of money from Equation (7) into the last expression, we obtain two equations, one for
each market:

q1A = min

{
q∗, q0A +

A

M
· eCq0A + (1− e

C
)q0B

e
C

}
, (12)

q1B = min

{
q∗, q0B +

B

M
· eCq0A + (1− e

C
)q0B

1− e
C

}
. (13)

If it happens that e
C

= 1 (no C-types enter theB-market) andB > 0, then we define q1B = q∗ as a
limit, because a C-type of infinitesimal size who decided to deviate and hold assetB could hold
the entire stock of it, which would certainly satiate them in an OTC trade – in the hypothetical
case that there was an N-type in the B-market willing to trade with them. Similarly, if e

C
= 0

and A > 0, then we define q1A = q∗.
How large can the aggregate supply of an asset be for the asset to remain scarce in OTC

trades? Clearly, the asset is more likely to be scarce if its ownership is diluted, i.e., if many
agents choose to hold that asset in the CM. So for example, asset A is most likely to be scarce if
e
C

= 1. But in this special case, Equation (12) tells us that the asset is scarce (q1A < q∗) only if the
condition 1 + A/M < q∗/q0A is satisfied. On the boundary, q1A = q∗, so we can use the money
demand equation (11) to obtain the bounds:

Ā ≡M (q∗/q̄0A − 1) , where q̄0A solves i = [`− θ fA(`, 1− `)] [u′(q̄0A)− 1] ,

B̄ ≡M (q∗/q̄0B − 1) , where q̄0B solves i = [`− θ fB(`, 1− `)] [u′(q̄0B)− 1] .

There are three things to notice here. First, if A > Ā, then asset A is certain to be abundant but
the reverse is not always true, because asset ownership can be concentrated in the hands of a few
agents. Second, if we did fix e

C
= 1 so that ownership of asset A was maximally diluted, then

asset A would indeed be abundant if and only if A ≥ Ā, and conversely for asset B. Third, if
the market for asset A has an exogenous liquidity advantage (δA > δB), then Ā > B̄, and vice
versa. For convenience, we define the maximal upper bound on asset supply beyond which
either asset is certain to be abundant:

18 If the C-type’s asset holdings are plentiful in the OTC, then we know that this agent will be able to purchase
the first-best amount of money in the DM, hence, q1A = q∗. On the other hand, if the asset is scarce in OTC
trade, the C-type gives away all of her assets, ϕA/e

C
. Moreover, since here we are in the case where the C-type

makes the offer, she will swap assets for money at a one-to-one ratio. As a result, in equilibrium it must be that
q1A = q0A + ϕA/e

C
, which explains the last expression.
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D̄ ≡ max{Ā, B̄}.

The remaining task is to characterize the OTC market entry choices. Consider first a C-type.
As we have already discussed, this type at the beginning of the period has already made the
choice to hold either asset A or asset B, so the choice of which market to enter has effectively
been made. Evaluating equation (4) at equilibrium quantities, we find that if the C-type makes
the TIOLI offer, her surplus of trading in market j ∈ {A,B} equals:19

SCj = u(q1j)− u(q0j)− q1j + q0j. (14)

But since the agent’s portfolio choice effectively determines her market choice if she turns out
to be a C-type, this surplus has to be balanced not only against the probability of needing to
trade, actually matching, and making the offer (`×αCj×θ), but also against the cost of carrying
the asset. Hence, we define the “net” surplus that the agent obtains if she chooses to specialize
in asset j to be:

S̃Cj ≡ −iq0j − [(1 + i)pj − 1](q1j − q0j) + ` [u(q0j)− q0j] + `αCjθSCj.

We can use the money and asset demand equations (8 and 11) to substitute for i and pj in the
last expression. After some algebra, we obtain:

S̃Cj = ` (1− αCjθ) · [u(q0j)− u′(q0j)q0j] + `αCjθ · [u(q1j)− u′(q1j)q1j] . (15)

Thus, in equilibrium, the C-types’ portfolio choice e
C

must satisfy:

e
C

=


1, if S̃CA > S̃CB,

0, if S̃CA < S̃CB,

∈ [0, 1], if S̃CA = S̃CB.

(16)

Finally, we want to characterize the market choice of the N-type agents. Since these agents
are asset buyers their own asset holdings do not matter, so they can enter the market for either
asset independently of which asset they chose to hold in the preceding CM. Thus, an N-type
will simply enter the market in which she expects a greater surplus, accounting for the proba-
bility of trading and making the TIOLI offer. Evaluating equation (5) at equilibrium quantities

19 This equality holds regardless of whether the asset is plentiful in the OTC meeting or not. Consider first
the case of plentiful assets. For this case evaluating the relevant (i.e., the “abundant”) branch of Equation (4) at
equilibrium quantities yields SCj = u(q∗) − u(q0j) − q∗ + q0j , which is exactly what one would obtain if q1j = q∗

was imposed on Equation (14). Next, consider the case of scarce assets and for simplicity focus on OTCA. In this
case, evaluating (4) at equilibrium quantities yields SCj = u(q1j)− u(q0j)− ϕA/eC , where ϕA/e

C
is the real value

of assets that the C-type brings into OTCA. But as we know from the discussion that leads to Equation (12), here
q1A = q0A + ϕA/e

C
. Hence, the validity of Equation (14) is once again verified.
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implies that the surplus for the N-type who chooses to enter OTCA is given by:

SNA =


u(q∗)− u(q0A)− q∗ + q0A, if A/e

C
> [u(q∗)− u(q0A)]/ϕ ,

q0A + ϕ A
e
C
− u−1

(
ϕ A
e
C

+ u(q0A)
)
, otherwise,

(17)

and the surplus for the N-type who chooses to enter OTCB is given by:

SNB =


u(q∗)− u(q0B)− q∗ + q0B, if B/(1− e

C
) > [u(q∗)− u(q0B)]/ϕ ,

q0B + ϕ B
1−e

C
− u−1

(
ϕ B

1−e
C

+ u(q0B)
)
, otherwise.

(18)

In (17) and (18) we have used the value of money, ϕ, to keep these expressions relatively short,
but it is understood that ϕ is itself a function of the core variables, defined in (7).

Thus, in equilibrium, the N-types’ entry choice e
N

must satisfy:

e
N

=


1, if αNASNA > αNBSNB,

0, if αNASNA < αNBSNB,

∈ [0, 1], if αNASNA = αNBSNB.

(19)

We can now define a steady-state equilibrium in the model with fixed asset supplies:

Definition 1. Assume (for now) that asset supplies are fixed and equal to (A,B) ∈ R2
+. A

steady-state equilibrium for the core variables of the model is a list {q0A, q1A, q0B, q1B, eC , eN}
such that Equations (11) for j = {A,B}, (12), and (13) hold, and agents’ entry choices satisfy
Equations (16) and (19).

3.3 Characterization of equilibrium

We are now ready to characterize the equilibria of the economy, summarized by the core vari-
ables {q0A, q1A, q0B, q1B, eC , eN}, conditional on the asset supplies A,B ≥ 0. Before we go to the
technical details, it is helpful to gain some intuition by considering the optimal entry decision
of the representative N-type, who takes as given the term e

N
, the proportion of other N-types

who enter the A-market, and best responds by entering in either market A or B. A higher value
of e

N
implies a bigger congestion amongN -types in marketA, a force that discourages our repre-

sentative N -type from entering into that market. On the other hand, a higher e
N

implies that a
larger fraction of C-types will be drawn to market A, because C-types like a market with many
N-types, and this force encourages our representative N-type to enter into that market. And,
to make things even more interesting, a higher value of e

C
implies that the supply of asset A,
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which is fixed for now, will be diluted among a larger number of agents (this channel becomes
more relevant if the supply of asset A is scarce). Hence, in any bilateral meeting in OTCA, the
surplus is more likely to be limited because the C-type is constrained by her asset holdings, yet
another force that discourages our representative N -type from entering into market A.

Summing up, an increase in the term e
N

generates multiple and opposing forces, and may
have non-monotonic effects on the optimal entry decision of the representative N-type. What
one can say safely is that everything else equal, the typical N-type is more likely to enter into
marketA if: (i) δA > δB, because then the former market has an exogenous matching advantage;
and (ii) A > B, because then there is a larger potential surplus when trading asset A.

Moving to the formal analysis, we construct equilibria as fixed points of e
N

. To be specific:
first, we fix a level of e

N
; then we solve for the optimal portfolio choices through Equations (11)-

(13) and (16); and finally, we define the N-types’ reply function:

G(e
N

) ≡ αNASNA − αNBSNB
αNASNA + αNBSNB

,

where the surplus (S) and match probability (α) terms have the optimal choices substituted.
This function measures the relative benefit to an individual N-type from choosing the A-market
over the B-market, assuming a proportion e

N
of all other N-type agents enters the A-market,

and all other decisions are conditionally optimal. To make it easier to visualize, G is scaled
to lie between -1 and +1. A value of e

N
is part of an “interior” equilibrium if e

N
∈ (0, 1) and

G(e
N

) = 0, or a “corner” equilibrium if e
N

= 0 and G(0) ≤ 0 or e
N

= 1 and G(1) ≥ 0.

Proposition 1. The following types of equilibria exist, and have these properties:

(a) There exists a corner equilibrium where e
C

= e
N

= 0; only the B-market is open for trade.

(b) There exists a corner equilibrium where e
C

= e
N

= 1; only the A-market is open for trade.

(c) Assume ρ = 0 (CRS) and asset supplies are low enough so that assets are scarce in OTC trade. Then,
limeN→0+G(e

N
) > 0 > G(0) and limeN→1−G(e

N
) < 0 < G(1); the corner equilibria are not robust

to small trembles. There exists at least one interior equilibrium which is robust to small trembles.

(d) Assume ρ > 0 (IRS). Then, limeN→0+G(e
N

) = G(0) < 0 and limeN→1G(e
N

) = G(1) > 0; the
corner equilibria now are robust to small trembles. There exists at least one interior equilibrium,
which may or may not be robust to small trembles.

(e) Assume ρ = 0 (CRS) and δA = δB (equal market quality). Then, a symmetric equilibrium exists
where e

C
= e

N
= A/(A+B), q0A = q0B and q1A = q1B, and pA = pB.

(f) If, in addition to the assumptions in (e), A = B < D̄/2 (asset supplies are equal and small), i → 0

(low inflation), θδ(1− `) < 0.5 (not-too-high bargaining power for the C-type), and u′′′ ≥ 0 (convex
marginal utility), then G′(0.5) < 0; that is, the symmetric equilibrium is robust to small trembles.

Proof. See Sections C.1-C.3 in the Web Appendix.
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Figure 2: The reply function G(e
N

) for CRS (ρ = 0) and varying asset supplies.

In all cases, the C-types’ entry choice e
C

is optimally adjusting in the background, and it is
generally an increasing function of e

N
; when there are many buyers in a market, sellers would

like to go to the same market. Of course, nobody would try to trade in a ghost town, so it must
be the case that e

C
= 0 if and only if e

N
= 0, and e

C
= 1 if and only if e

N
= 1 (parts (a) and (b)

of the proposition). Therefore, the corners are always equilibria.
These results are depicted in Figure 2, which shows how the reply functionG depends on e

N

and on asset supplies, given CRS in matching. Blue dots at G(0) = −1 and G(1) = +1 indicate
that the corners are always equilibria. In the left panel, G is shown for relatively low supplies of
A,B, and there is an interior fixed point at e

N
= 0.5. As shown in part (c) of the Proposition, the

corners are not robust to small trembles, but the interior fixed point is: if a few more N-types
accidentally enter the A-market, individual N -types have an incentive to deviate back to B. In
the middle panel, we show what happens for a higher supply of A: the G-function shifts up
and more agents trade in the A-market, but the equilibrium is still robust.

The right panel illustrates the case where both A and B are high: the G-function shifts back
down, but now it contains a flat segment for intermediate values of e

N
. This is due to the fact

that with high asset supplies, the aforementioned dilution effect disappears: if the supply of as-
sets is high enough, each individual C-type will be able to achieve q∗ in the DM after they sell
their assets in the OTC (even as the fixed asset supply gets diluted among more C-types). With
the dilution effect out of the picture, a higher e

N
implies a higher congestion effect in market A

but also a larger measure of C-types in that market (i.e., a higher equilibrium e
C

). With CRS in
matching these two effects completely offset each other, leading to a flat G-function; or, equiv-
alently, a continuum of equilibria with e

C
= e

N
when asset supplies are large enough.

We now move on to the case of IRS in the matching technology, corresponding to part (d)
of Proposition 1. Figure 3 shows the reply function G under ρ = 0.5, an intermediate degree of
IRS. In this case, a high value of e

N
still implies some congestion among N-types, but this effect

is dominated by the large measure of C-types drawn to market A (precisely because e
N

is high).
Does that mean that G will be strictly increasing? Not necessarily. Consider for instance the
left panel of the figure, where both asset supplies are small, so that the dilution effect is active.
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Figure 3: The reply function G(e
N

) for IRS (ρ = 0.5) and varying asset supplies.

If e
N

is large, the typical N-type has a high probability of matching in market A because that
market is flooded with C-types (as well as N-types). But each of those C-types is carrying only
a tiny fraction of the supply of asset A, which was small to begin with. This force discourages
the representative N-type from entering market A, and gives G the non-monotone shape seen
in the left panel of Figure 3. More precisely, that picture shows that there are five equilibria: the
two corners (which are both robust under small errors now), the robust interior equilibrium,
and two non-robust asymmetric equilibria.

What if the supply of assetAwas high but that of assetB stayed low? This case is illustrated
in the middle panel of Figure 3, where one can see that the robust interior equilibrium is now
eliminated. Unless trade was concentrated in the B-corner in the first place, N-types now have
an incentive to migrate to the A-market, C-types will follow, and ultimately all trade will be
in the A-corner. Finally, the right panel depicts the case where both A and B are high. In this
case, the G-function shifts down (compared to the high-A, low-B case), and incentives to trade
in the B-market are restored. However, when both asset supplies are large, the dilution effect
vanishes and the G-function becomes increasing throughout, so the corners are the only robust
equilibria. There does exist an interior equilibrium by continuity, but if it was ever played, a
small shock would drive the agents into one of the corners.

What is important here is that to obtain this result we do not need increasing returns to be
particularly strong. As Figure 3 shows, robust interior equilibria can exist even under increas-
ing returns – but only if asset supplies are small enough. (For a formal analysis of this case, see
Section C.3 in the Web Appendix.) This is why accounting for the endogenous choice of asset
supply by issuers is so important, a task we will carry out in Section 4. We shall see there that
even with ρ � 1, the outcome of the issuers’ game looks as extreme as the outcome with ρ = 1,
because competition between issuers makes it so.

Finally, as part (e) of Proposition 1 shows, the system admits a simple symmetric solution in
one special case which we call “balanced CRS”: there are CRS in OTC market matching (ρ = 0)
and neither asset has an exogenous liquidity advantage (δA = δB).20 Such equilibria can be

20 We use the word “balanced” to describe the assumption δA = δB . We could also call it “symmetric”, but
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solved in closed form with a judicious choice of utility function, as we explore in Section 5
below. And as part (f) of the Proposition shows, with a few more technical assumptions we
can prove that G(e

N
) is downward-sloping in a neighborhood of the symmetric equilibrium (as

depicted in the left panel of Figure 2); thus, this particular interior equilibrium is robust.
Beyond the results of Proposition 1, a general analytical characterization is not possible and

most of the analysis which follows will be numerical. (The model can also not be simplified
without losing essential insights.21) Throughout the rest of the paper, we maintain the param-
eters u(q) = log(q), ` = 0.5, θ = 0.5, i = 0.1, and M = 1, which yield Ā = 0.8/(4 − δA) and
B̄ = 0.8/(4− δB). In the rest of Section 3, we vary the asset supplies A and B exogenously, and
in Section 4, they will be chosen by strategic issuers. Throughout, we vary the parameters of
OTC microstructure (δA, δB, ρ).

For given parameters, we guess a starting point for e
N

, then iterate the function G(e
N

)

in the direction of its sign, until convergence or until reaching a corner. Specifically, we use
e0
N
≡ δAA/(δAA+δBB) as an efficient starting point for iteration; if a robust interior equilibrium

exists, it is likely to involve more entry into the market with a higher matching probability,
and/or higher trading volume. If the corners are not robust, this procedure will always find
an interior equilibrium. On the other hand, a robust interior equilibrium may exist but not be
found if a corner is robust and the starting point is close to it.

3.4 Comparative statics

Now that we understand the structure of possible equilibria, we want to compare asset prices
in these equilibria, and interpret the comparative statics of prices with respect to quantities as
the aggregate demand for these assets. These comparative statics are shown in Figure 4. In all
graphs, the supply of asset A is on the horizontal axis and the supply of B is held fixed and

we reserve that word for equilibria where all variables indexed by A equal their B-counterparts (e.g., pA = pB).
Even in the balanced environment, there are asymmetric equilibria: the corner equilibria for one, and additional
asymmetric interior equilibria if ρ > 0, as shown in the left panel of Figure 3.

21 We have a core system of six equations, and most of the endogenous variables show up in multiple equa-
tions. Moreover, the equations are non-linear and include kinks, due to the various branches that characterize
the agents’ market entry decisions. One may wonder whether some simplifying assumptions would allow us to
achieve a complete analytical characterization. We believe that the model presented here constitutes the most par-
simonious framework that can capture all the salient features of the question we are studying, hence, any further
simplification would eliminate insights that we think are essential. A few examples may clarify this point. A
simplifying assumption often adopted in these types of models is that the bargaining power of agents is equal to
either 0 or 1. (This is precisely what we assume for the DM, because not many interesting things happen in that
market.) Imposing such an assumption in the OTC would be a bad idea: it would imply that either the C-types
or the N-types get no surplus from OTC trade, which would render their entry decision indeterminate. As we
have explained, the agent’s decision about which market to visit is one of the most important economic forces
in our model. As another example, some papers (e.g., Mattesini and Nosal, 2016) gain tractability by assuming
that asset trade takes place only in OTC markets, and the original asset holdings are given to agents in the CM as
endowments, i.e., there is no primary asset market. Clearly, such an assumption here would deprive the model of
one of its most important ingredients, the endogenous determination of asset supply.
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Figure 4: Net liquidity premia Lj (in %) and entry choices, varying A and holding B fixed
(indicated by a vertical line).

indicated by a gray vertical line. We show three cases: first, the simplest case of balanced CRS
(ρ = 0 and δA = δB); second, giving an exogenous advantage to asset A (δA > δB); and third,
without an advantage for either asset but with IRS in matching (ρ > 0). In all three examples,
the graphs in the top row show the net liquidity premia of assets A and B, defined as:

Lj ≡ (1 + i)pj − 1 = ` αCjθ [u′(q1j)− 1] .

The graphs in the bottom row of the figure show the market entry choices e
C

and e
N

.
Notice first that some standard results are replicated in our model. First, the liquidity pre-

mium of an asset is zero if that asset is in very large supply, no matter how liquid the market
for that asset is. The reason is that as the asset supply becomes large enough, q1j → q∗, and
thus, u′(q1j)→ 1. (One should be careful with terms here: the asset does not “lose” its liquidity
properties in this case, they only become inframarginal. The asset still contributes to the overall
supply of liquidity in the sense that money demand will be lower than it would be if that asset
did not exist.) Furthermore, real balances decrease with inflation so the need to liquidate assets
in the OTC markets becomes stronger with inflation; if the asset supplies are small enough, the
liquidity premium on any liquid asset will rise with inflation, too.

In addition to these standard results, our model also delivers new insights into asset pricing
in this environment of segmented OTC markets. Three results stand out. The first is that when
matching in the markets satisfies “balanced CRS” (that is, CRS and neither market having an
exogenous liquidity advantage), there exists a unique interior equilibrium when the asset sup-
plies are not too large. In this equilibrium, e

C
= e

N
= A/(A+B), so the ratio of buyers to sellers
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is 1 in each market, we have pA = pB, and all the equilibrium quantities and prices only depend
on the sum of the asset supplies, A + B. Thus, the assets turn out to be perfect substitutes in
general equilibrium even though their secondary markets are completely segmented. Part (e)
of Proposition 1 shows this formally, and the leftmost column of Figure 4 illustrates it.

The second result from this section is that exogenous liquidity differences are amplified by
the market entry process, even with CRS. Consider a case where δA > δB, so that OTCA has an
exogenous liquidity advantage. As illustrated in the middle column of Figure 4, both e

C
and

e
N

increase, but the latter increases more. Intuitively, the N-types only consider the potential
trading surplus in the OTC market when deciding which market to enter, while the C-types
also consider the ex-ante cost of carrying either asset, and therefore the N-types are more sensi-
tive to liquidity differences when choosing their market. The end result is that market tightness
from the point of view of asset sellers rises in the more liquid market and falls in the less liquid
one: formally, we observe that the elasticity of the endogenous ratio αCA/αCB with respect to
the exogenous ratio δA/δB is bigger than 1. Crucially, it is the point of view of OTC asset sellers
that matters for asset pricing at the issue stage; people who buy a newly issued asset are con-
cerned about the conditions at which they can sell it down the road, but people who plan to buy
the asset later in the secondary market have no influence on the issue price. As a consequence,
even a small divergence of δA and δB will drive a larger wedge between the liquidity premia on
the two assets. We view this result as Step 1 of an explanation why two assets with otherwise
similar features can have big differences in their liquidity – most prominently, of course, U.S.
Treasuries compared to equally safe corporate or municipal bonds.

The third result from this section is that IRS in matching encourage market concentration,
i.e., corner equilibria. This is illustrated in the rightmost column of Figure 4. Near the origin,
we have a case ofA� B, so assetA is barely traded in OTC markets (though not entirely absent
due to the fact that ownership of asset B is much more diluted). As the supply of A increases,
more agents are willing to trade it in the OTC market because of the increase in potential trad-
ing surplus; and crucially, N-types are more sensitive to this increase, so the ratio e

N
/e

C
rises

as A increases. This is important because again, it means that asset A becomes rapidly more at-
tractive to C-types through two channels (market tightness and IRS).22 As asset demand in the
CM by future C-types determines the issue price, the resulting increase in liquidity is so strong
that it makes the price of asset A upward sloping in its supply – at least, until that supply is so
large that the force of diminishing marginal utility takes over.23 But we are not done. When the
supply of A becomes even larger, all OTC trade becomes concentrated in the market for A and
B ceases to be liquid at all. As this happens, the price of assetA jumps upward discontinuously;

22 To be precise: with IRS and δA = δB , we observe e
C
< e

N
in the interior if and only if A < B. The more

plentiful asset is more liquid.
23 Weill (2008) has a result of similar flavor: he studies an extension of Duffie et al. (2005) with multiple assets,

keeping the aggregate supply of tradable assets constant but allowing some assets to be in larger supply than
others. He finds that the more plentiful assets are easier to find and have a higher price.
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later, we will see that this effect of increasing returns provides a powerful incentive to the issuer
of an asset to issue up to the point where competing assets are driven out of secondary markets.

There are three empirically relevant aspects of this theoretical result. First and most obvi-
ously, the upward sloping demand finds its counterpart in the observation that bond liquidity
can be positively related to bond supply, which is well-established in the empirical literature
on corporate bonds (Hotchkiss and Jostova, 2007; Alexander et al., 2000).

Second, this result is Step 2 of our explanation why two assets with otherwise similar fea-
tures can have big differences in their liquidity. Even with a modest degree of IRS in matching,
an asset in smaller supply is likely to be significantly less liquid than one which is in larger
supply, as agents prefer to enter the market where gains from trade are larger, and through
their own entry help to make this market “thick”. And consider how this would interact with
the first step described above: even with a small exogenous difference in market efficiency, the
disadvantaged market is likely to see significantly less entry, and thereby becomes very “thin”
indeed.24 In the next section, we will see how these factors reinforce one another, and how they
interact with an endogenous choice of supply.

Third, the result can help explain how consolidating secondary markets would be beneficial
for asset issuers, a belief commonly held among practitioners (BlackRock, 2014). To see this,
consider a version of our model with three issuers, A, B, and C. Compare the case where all
bonds trade in distinct secondary markets with an alternative case where the OTC markets for
bonds B and C merge. In our model, this would imply that, with even slight IRS in matching,
the liquidity premium on bonds B and C will be higher in the second scenario, because the
consolidation of the markets reduces the investors’ risk of not being able to sell.

To summarize our results: we find that liquidity premia are always zero if asset supply is
large but may be positive if asset supply is small enough. With CRS, the liquidity premium
on a particular asset is always decreasing in that same asset’s supply; but with IRS, liquidity
depends positively on issue size and asset demand curves can therefore have upward sloping
segments. However, the liquidity premium on an asset is always decreasing in the supply of
other assets, which opens the door to strategic interaction.

24 Interpreting market A as the market for U.S. Treasuries, there is an additional element that may add to this
market’s liquidity’: the Federal Reserve (FED) often participates in this market by selling or buying large quantities
of assets. For instance, in the period between November 2008 and September 2011, the FED purchased $1.19
Trillion of Treasury debt, as part of a program now known as quantitative easing (QE). While our paper does
not explicitly model interventions of the FED in the financial markets, in the form of open market operations
or QE, it is reasonable to expect that the presence of a big player such as the FED in that market will be a pole
of attraction for other investors, too: if I want to sell assets in the secondary market (like the C-types in our
model) and I know that someone is purchasing billions worth of asset A in OTCA, why would I go anywhere
else? Readers who are interested in how one could model direct interventions of the FED in financial markets in a
similar framework are referred to Herrenbrueck (2019a) and Geromichalos and Herrenbrueck (2017). For a careful
empirical characterization of the effects of QE, see Song and Zhu (2018).
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4 The economy with strategically chosen asset supply

4.1 The game between the asset issuers

We look at the non-cooperative game between two issuers who seek to maximize their utility.
They live only in the CM, where they can work, consume, and issue assets. Their utility within
the period is Y(X,H) = X − H , where X,H denote consumption and work effort, and they
discount the future by the same factor β as all agents. They take into account that the real price
at which they can sell their asset, ϕpj , depends on the supplies of both assets. For example, the
problem of issuer A who has issued A− assets in the previous period can be described by the
following Bellman equation:

WA(A−) = max
X,H,A

{
X −H + βWA(A)

}
s.t. X + ϕA− = H + ϕpAA,

which we can simplify to yield:

WA(A−) = −ϕA− + max
A

{
ϕpAA+ βWA(A)

}
.

Just like for private agents, the issuer’s choice of A does not depend on their previous choices.
We can use this, plus the fact that in steady state ϕ/ϕ̂ = (1 +µ), to solve for issuer A’s objective:

JA =
ϕ

1 + i
[(1 + i)pA − 1]A

=
ϕ

1 + i

(
` αCAθ [u′(q1A)− 1]

)
A. (20)

With an analogous derivation, issuer B’s objective is:

JB =
ϕ

1 + i

(
` αCBθ [u′(q1B)− 1]

)
B. (21)

Simply put, each issuer seeks to maximize the product of the net liquidity premium Lj and the
supply of their asset, taking into account that their choice of asset supply affects the general
equilibrium choices of the agents.

The next step is to choose a solution concept for the game between the issuers. To keep
our analysis simple and contained, we proceed in two stages that should be understood as
distinct. First, we will describe the payoff structure facing the asset issuers in the stage game
and analyze how this structure depends on parameters such as whether one of the assets has
an exogenous liquidity advantage (δA, δB), and whether the matching function exhibits CRS or
IRS (ρ). We believe this will allow our readers to extrapolate what kind of outcomes one might
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obtain with their preferred solution concept.25 Second, for the sake of concreteness, we will
solve for static Nash equilibria of the stage game and analyze how these equilibria, as well as
resulting macroeconomic outcomes and welfare, depend on the market parameters.

4.2 Strategic structure of the game

In this subsection, we analyze the strategic structure of the game (i.e., the incentives asset is-
suers face); in the next subsection, we will analyze how static Nash equilibria of the game
depend on variations of this structure.

As before, we begin with the simplest case: “balanced CRS” in financial markets (ρ = 0 and
δA = δB). As we saw in Proposition 1 above, the two corner equilibria are not robust to small
errors: if a small measure of C-types happens to enter a market with no N-types, then N-types
can profitably deviate by entering that market as well. More and more agents (C and N) will
enter that market until the interior equilibrium is reached; consequently, in the case of balanced
CRS, the interior equilibrium defined in part (e) of the Proposition is the interesting one to
study. In this equilibrium, liquidity premia are positive, equal (LA = LB > 0), and depend only
on the sum A + B: the assets are perfect substitutes and are priced along a common demand
curve. This case of balanced CRS is therefore isomorphic to a version of the model where the
assets could be traded in the same OTC market rather than in segmented markets as we assume
here. And because the assets are perfect substitutes, the only Nash equilibrium of the game
between the issuers is the symmetric Cournot equilibrium where both assets are issued in the
same quantity, each approximately one-third of the quantity D̄ that would drive the liquidity
premium to zero.

Next, we are interested in the effects of exogenous liquidity differences. Specifically, we set
δA equal to 1 and let δB vary, while maintaining CRS. Figure 5 illustrates the numerical results:
the leftmost column shows the balanced CRS case, and the rightmost column confirms that if B
has too much of a disadvantage, the interior equilibrium ceases to exist and all OTC trade is in
the A-market. Issuer A gets to issue the monopoly quantity, approximately one-half of D̄, and
issuer B issues an arbitrary amount because asset B is illiquid in any case.

The intermediate values of δB, where the B-market is only a little bit worse than the A-
market, show the transition. As we had already seen in Figure 4 (middle column), the demand
curve for asset A has a kink whenever δB is less than δA. As long as δB is close enough, the
Cournot-style interior equilibrium survives. When δB becomes too small, however, A prefers

25 As one example, one may argue that political agents for whom liquidity rent is not the only consideration,
such as the U.S. Treasury, are not Nash players but are able to precommit. We do explore this possibility in the Web
Appendix: first, a “semi-strategic” case where the supply of A is set non-strategically, and issuer B best-responds
to it; second, a Stackelberg duopoly where issuer A moves first and precommits to a (typically, large) issue size
before B best-responds. And if we take the repeated interaction between the issuers seriously, there are even more
possibilities, but they go beyond the scope of our paper.
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Figure 5: Payoffs as functions of asset supplies, with CRS (ρ = 0) and asset A having an ex-
ogenous liquidity advantage over asset B (δB ≤ δA = 1). Darker shades of red indicate larger
payoffs, white indicates zero. The blue and green dots indicate particular Nash equilibria.

to jump to a very large quantity that concentrates OTC trade in the A-market and drives B’s
liquidity premium to zero – even at the expense of a low liquidity premium for A itself. We will
analyze the consequences for the economy in more detail later, but we can already see that the
total supply of liquid assets is largest if B is somewhat illiquid, smallest if B is very illiquid,
and in between if both A and B are very liquid.

To summarize: with CRS in financial markets, the structure of the game resembles Cournot
competition. If not too unbalanced, CRS promotes the interior equilibrium in OTC markets
where every asset is somewhat liquid. As a result, we see relatively small issue sizes.

Finally, we look at how the issuers’ incentives are affected by IRS in financial markets.
Specifically, we set δA = δB = 1 and let ρ vary. These results are illustrated in Figure 6; the
leftmost column repeats the balanced CRS case from the previous figure, and the rightmost
column illustrates how a strong degree of IRS makes the symmetric interior entry equilibrium
so unstable that it is never reached as the subgame of the issuers’ game. Why? Let us go back
to Figure 3. Suppose that asset supplies are small and the interior entry equilibrium is played
– i.e., both OTC markets are active. Issuer A has a strong incentive to supply more: yes, this
moves her down her own demand curve (reducing her profits), but at the same time, the bigger
surpluses in the A-market attract so many traders that the B-market shuts down (increasing
A’s profits). Of course, B has a symmetric incentive. With IRS, traders prefer to concentrate in
one market, so the reward to issuers of offering a bigger trading surplus than their competitor
becomes enormous.26 Consequently, there is a (numerically approximate) Nash equilibrium
where quantity A is so close to D̄ that issuer B does not find it profitable to issue any more,

26 Recall: when computing equilibria, we made the tie-breaking assumption that traders are more likely to pick
the corner of the asset of which there is a larger supply. See the discussion at the end of Section 3.3.
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Figure 6: Payoffs as functions of asset supplies, with IRS but no exogenous liquidity advantage
(δA = δB = 1). Darker shades of red indicate larger payoffs, white indicates zero. The green and
blue dots indicate particular Nash equilibria.

because in either case their asset would trade at a zero liquidity premium, either due to being
illiquid or due to being plentiful. And there is a mirror Nash equilibrium with A and B’s roles
reversed, which is what the two dots in the top right corner of Figure 6 indicate.

For intermediate values of ρ, we see a smooth transformation of the playing field. For low
ρ, assets tend to be strategic substitutes where issuers prefer to issuer neither too little nor
too much, but for high ρ, assets become strategic complements where issuers strongly prefer
to issue more than the other. Crucially, the fact that the playing field changes smoothly does
not mean that the Nash equilibria change smoothly. On the contrary: as ρ increases, we get a
jump transition from Cournot-type equilibria of low issue sizes and both assets being liquid to
asymmetric equilibria of high issue sizes and only one asset being liquid. Note that the critical
amount of IRS is approximately ρ = 0.02 – not particularly large – because it is the competition
between issuers that gives a small amount of IRS a big endogenous ‘kick’.

We can say that with enough IRS in financial markets, despite being a game in quantities
rather than prices, the strategic structure of the game resembles Bertrand competition rather than
Cournot. This promotes corner equilibria, where one asset ends up being very liquid and the
other one not liquid at all. As long as there are no exogenous differences in market quality
(δA ≈ δB), in such equilibria the ‘winning’, liquid asset must be in large supply (close to D̄).

4.3 Comparative statics

In this section, we analyze the comparative statics with respect to δB of the static Nash equi-
libria of the issuers’ game. We consider both constant returns in matching and small amounts
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Figure 7: Comparative statics of the strategic equilibria with respect to δB, with CRS (ρ = 0).

of increasing returns. Our goal is to understand what happens if one of the assets (A for con-
creteness) has an exogenous matching advantage, and how the answer to this question interacts
with the returns to scale in matching. Throughout this section, we hold δA = 1 fixed.27

The case of CRS is illustrated in Figure 7. As δB declines slightly from 1 (the balanced case),
A begins to issue more and B begins to issue less (panel [a]), but the strategic pattern of a
Cournot game is maintained. The exogenous liquidity advantage of asset A is magnified by the
entry choices of agents (panel [d]), which feeds back into a rising liquidity premium on asset A
and a falling liquidity premium on asset B (panel [b]). Outputs diverge: C-types who hold as-
set A end up purchasing smaller quantities q0A and q1A, but the probability that they will obtain
the larger one of the two, q1A, increases. Conversely, C-types who still hold asset B despite its
liquidity disadvantage are compensated with higher quantities q0B and q1B (panel [c]).

As δB declines further, we observe a discontinuity. At some point, the benefit to A from

27 One detail to be aware of is how we compute the Nash equilibria. We iterate best responses of the two issuers
on a finite grid of possible asset supplies which excludes asset supplies which we know can never give positive
payoffs: zero and supplies exceeding D̄. The starting point is the smallest positive asset supply on the grid (e.g.,
the point (0.05D̄, 0.05D̄) on a 20×20-grid). The remaining choice is whether we let A or B move first. In this
section, all equilibria are computed with A moving first; the equilibria where B moves first are usually identical,
payoff-identical, or mirror images. In Figures 5 and 6, Nash Equilibria where A moves first are indicated with a
blue dot, and those where B moves first are indicated with a green dot.
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Figure 8: Comparative statics with respect to δB, with just the tiniest bit of IRS (ρ = 0.01).

ramping up the issue size all the way to drive out B from the financial markets becomes too
strong, so this is what A does. Asset B becomes fully illiquid, and therefore its issue size and
the quantities q0B and q1B become indeterminate. As a result of this aggressive competition,
average output of DM goods is highest at the discontinuity. If δB declines even more, the threat
of trading asset B gradually diminishes; eventually, A becomes a monopolist who issues an
intermediate quantity of asset A and average output declines to its lowest value. (Welfare is a
more complicated story, as we explain in Section 4.4 below.)

When we allow for a very small degree of IRS in matching, ρ = 0.01 (illustrated in Figure 8),
the results are almost identical to those with CRS, as one might expect given that ρ is so close to
zero. Even so, we can see that the transition from the interior equilibrium to theA-corner where
asset B is illiquid happens ‘sooner’, i.e., for a higher value of δB, than under CRS. Increasing
returns make it slightly easier for A to drive B out of the market: in the example, A will do so
for δB = 0.87 under ρ = 0.01 but not under ρ = 0.

Based on Figure 6, one would guess that when increasing returns are strong enough, the
Cournot-style equilibrium is eliminated in favor of aggressive competition for secondary mar-
ket liquidity. But how strong do they need to be? Our perhaps surprising answer is: not very.
As Figure 9 illustrates, the transition occurs somewhere between ρ = 0.01 and ρ = 0.02; in the
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Figure 9: Comparative statics with respect to δB, with a little bit more IRS (ρ = 0.02).

latter case, even with a relatively tiny degree of IRS, issuer competition is fierce and in every
case only one market is open. However, this does not mean that the exogenous market quality
parameters δA and δB stop mattering. When δB = δA = 1, an issuer who wishes to capture the
secondary market must issue the quantity D̄, which also drives her own payoff to zero. But
as δB declines, so does the threat of B’s competition, and therefore A’s issuance is negatively
related to her strategic advantage δA/δB.

While our model abstracts from a number of factors that are certainly influencing the bor-
rowing decisions of the real-world issuers (the U.S. Treasury, large corporations, etc.), our the-
ory generates solutions that resemble patterns in real-world asset markets. For instance, Fig-
ures 7 and 8 illustrate how even a small disadvantage of market B manifests itself as a higher
matching probability for sellers of assetA (panel [d]), hence a larger liquidity premium for asset
A (panel [b]), and how this mechanism is reinforced by issuer B’s decision to scale back their
issue size (panel [a]). The question whether the Treasury should be considered a strategic agent
is interesting but not dispositive. In the Web Appendix, we consider a “semi-strategic” model
where issuer B is strategic but issuer A is not. We show that the implications – at least, as far as
issuer B is concerned – are broadly the same.
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Figure 10: Welfare as a function of δB, measured as equivalent CM consumption, in percent
deviations from the first-best.

4.4 The relationship between asset supplies, output, and welfare

We define social welfareW to be the total surplus across all DM trades, as follows:

W ≡ `e
C

(
(1− αCA) [u(q0A)− q0A] + αCA(1− θ) [u(q̃1A)− q̃1A] + αCAθ [u(q1A)− q1A]

)
(22)

+ `(1− e
C

)
(

(1− αCB) [u(q0B)− q0B] + αCB(1− θ) [u(q̃1B)− q̃1B] + αCBθ [u(q1B)− q1B]
)

In monetary models of this kind, there is no general relationship between the supply of liquid
assets and output or welfare. For example, consider the corner equilibrium where only the OTC
market for asset A is open (or assume for a moment that A is the only asset). Applying a recent
result by Herrenbrueck and Geromichalos (2017) and Huber and Kim (2017), it can be shown
that welfare is a decreasing function of the asset supply in a neighborhood (Ā − ε, Ā). Why?
First, note that as A increases (but is still below Ā), q0A falls and (q1A, q̃1A) rise, so the effect on
average output is ambiguous and depends on parameters. However, the welfare impacts of
these changes are weighted by the marginal utility term u′(q)− 1. If A is close to Ā, then u′(q1A)

is close to u′(q∗) = 1; thus, the welfare gain which successful traders receive from higher A
vanishes, but the welfare loss of unsuccessful traders does not, and the overall welfare effect
is negative. This is confirmed by combining panels [a] and [c] of Figure 9, showing increasing
asset supply and output near Ā, with panel [c] of Figure 10, which shows the drop in welfare.

Huber and Kim (2017) also show (in a model with a single OTC market and a single bond)
that when both sides in the OTC market have some bargaining power, then welfare is an in-
creasing function of the asset supply in a neighborhood around zero, so the optimal asset sup-
ply is nonzero. We confirm their result for a special case of our model in the next section, where
the two OTC markets are identical, assets are therefore perfect substitutes, and we can solve the
model analytically and in closed form.

What does this imply for the relationship between market microstructure and welfare in
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general? First, using the fact that an asset supply close to D̄ is always ‘too much’ from a welfare
perspective, we argue that any condition that leads to aggressive competition among the asset
issuers is best avoided. In particular, the general intuition that the more competition, the better
for social welfare, is not valid when it comes to liquid assets. The same reasoning would apply
when matching is CRS and we compare a Cournot oligopoly of few versus many competitors.

Second, there is less clarity when we are far from the aggressive “everyone issues D̄” case.
For intermediate bargaining power θ ≈ 0.5, a Cournot duopoly is better for welfare than a
monopoly, so it is also possible to have too little competition. But the exact turning point will
depend on details.

Third, and perhaps surprisingly, the effect of the exogenous ‘market quality’ parameter δB
on welfare is not monotonic. In fact, for IRS and δB ≈ δA, the effect is negative, because sim-
ilarity promotes aggressive competition. For CRS, we have shown that δB � δA promotes a
monopoly and δB ≈ δA promotes a duopoly, but it is intermediate values of δB that promote the
most aggressive competition, the largest supply of liquid assets, and a dip in welfare. It is also
important to recognize that little of the welfare results can be ascribed to the direct effect on the
extensive margin of OTC trade, as the [d]-panels of Figures 7-9 show: asset B is endogenously
illiquid for δB < 0.9, no OTC trade in that market actually takes place, but the threat that it
might still affects the equilibrium.

5 The special case of balanced CRS

As we showed in part (e) of Proposition 1, in the special case of ρ = 0 and δA = δB ≡ δ there is an
equilibrium of the economy with e

C
= e

N
= A/(A+B), and symmetry in the other equilibrium

variables: q0A = q0B, q1A = q1B, and pA = pB. So we can drop the asset subscripts for the rest of
this section. If we further assume that u(q) ≡ log(q), which normalizes the first-best level of DM
production to q∗ = 1, there is a closed-form solution both for the portfolio-choice subgame and
for the Cournot-Nash equilibrium of the issuers. In this section, we analyze this closed-form
solution in more detail as it provides valuable intuition for the more complex, asymmetric,
cases analyzed in the previous section.

First, define the parameter κ ≡ (1− `)δθ, which summarizes financial market liquidity from
a C-type’s point of view. (The (1 − `)-term is the measure of N-types in the economy, and it
enters here through the CRS matching function.) The upper bound on the overall asset supply
where assets become abundant in OTC trade is D̄ ≡ i/[`(1−κ)] ·M , and for fixed asset supplies
which satisfy A+B < D̄, we obtain the solution:

q0 =
1− κ+ κ M

M+A+B

1 + i/`
, q1 =

1 + (1− κ)A+B
M

1 + i/`
, p =

1

1 + i
·

(
1 + `κ

i/`− (1− κ)A+B
M

(1− κ)M+A+B
M

+ κ

)
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For large enough asset supplies, i.e., A + B ≥ D̄, it is easy to solve for q0 = [1 + D̄]−1, q1 = 1,
and p = 1/(1 + i).

From here on, we could move directly to the solutions to the issuer’s game; they will be in
closed form, but nonlinear. We can obtain something even simpler by recognizing that while
the asset price p is not exactly linear in the asset supplies, it is nearly so as long as the asset
supplies are small enough. To formalize this idea, we note that as i ↘ 0, we have (q0, q1) ↗ q∗

and also D̄ ↘ 0. Thus, we define counterparts to the above equilibrium objects which are
log-linearized around the first-best point, and indicate them with a circumflex:28

q̂0 ≡ i · d
di

log(q0/q
∗), q̂1 ≡ i · d

di
log(q1/q

∗), p̂ ≡ i · d
di

log(p)

For the convenience of shorter formulas, we define the supply of assets relative to money to
be s ≡ (A + B)/M (with the obvious extension to many issuers: s ≡

∑
j Aj/M ), and define its

upper bound where the liquidity premium becomes zero to be: s̄ ≡ D̄/M = i/[`(1−κ)]. For the
interior case where s ≤ s̄, we obtain:

q̂0 = − i
`
− κs, p̂ = L− i,

q̂1 = − i
`

+ (1− κ)s, where: L = κi− `(1− κ)κs

Now, the effective demand curve for liquid assets L(s) is linear in asset supplies. Solving for
monopoly, Cournot duopoly, Stackelberg duopoly, and competitive (price-taking) issue sizes is
thus straightforward.29 Writing asset supplies as proportions of the upper bound s̄:

Total asset supply s Liquidity premium L

Monopoly 1
2
s̄ 1

2
κi

Cournot 2
3
s̄ 1

3
κi

Stackelberg 3
4
s̄ 1

4
κi

Competition s̄ 0

Quantities of goods q̂0 and q̂1 corresponding to each of the above asset supply solutions can
be computed easily. Welfare is a little bit more interesting. Recall the definition of welfare as

28 What about the quantity q̃1, which is the amount of DM-production that the C-type can afford after the N-
type makes the offer in the OTC market? It turns out that near the Friedman rule, q̃1 ≈ q1 and they have the same
Taylor expansion around q∗. So q̂1 is the approximate post-trade quantity no matter whether the C-type or the
N-type made the offer.

29 Crucially, all of these solutions assume that issuers have zero marginal cost of issuing bonds. This may not
be realistic; perhaps what distinguishes large borrowers such as the Treasury from smaller competitors is precisely
that the Treasury has a lower cost of creating safe assets (which then have the chance to become liquid by virtue of
being traded in thick secondary markets). In the context of our general model with IRS and/or unequal markets,
we explore this extension numerically in the Web Appendix.
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Figure 11: Approximate social welfare in the balanced CRS case (ρ = 0, δA = δB = 1) and how
it depends on bargaining power θ and scaled asset supply s = (A + B)/M . Possible outcomes
of the issuers’ game are indicated: (M)onopoly, Cournot (D)uopoly, (S)tackelberg duopoly, and
price-taking (C)ompetition.

total surplus across all trades, W , in Equation (22). Since W as a function of i is flat at the
Friedman rule, we need to take a second-order Taylor expansion. Net of the first-best welfare
amount (which equals −`), we obtain the approximation:

Ŵ ≡ − `
2

(
[1− δ(1− `)] q̂20 + δ(1− `) q̂21

)
We illustrate this welfare function in Figure 11. Its shape is critically influenced by θ, the bar-
gaining power of the C-type in OTC trade. A higher value of θ (through κ) directly decreases
both quantities (q̂0, q̂1), because if liquidity is easier to obtain ex-post, agents will obtain less of
it ex-ante. Thus, the best value of θ for social welfare is the lowest one: θ = 0. But taking θ as
given, its level also governs how much asset supply is best for welfare. Specifically, call this
level s∗; after some algebra, it turns out that it is:

s∗ =
(1− θ)[1− θδ(1− `)]
1− (2− θ)θδ(1− `)

· s̄,

where the ratio term is bounded between zero and one. As a concrete example, for all numerical
experiments in this paper we used the parameters θ = ` = 0.5; thus, depending on market
quality δ, the second-best total asset supply is between 50% and 60% of its upper bound (where
the liquidity premium becomes zero). This is just above the monopoly outcome and just below
the Cournot duopoly outcome, which explains why the best welfare outcomes in Figure 10 are
obtained for a modest degree of competition.
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6 Conclusion

We develop a model in which an asset’s liquidity and, hence, its equilibrium price depend on:

1. The microstructure of the secondary market where that asset trades;

2. The microstructure of the secondary market(s) where “competing” assets trade;

3. The decision of agents to visit these secondary markets; (which in turn depends on the
microstructure of the various markets), and;

4. The endogenous supply of the various assets.

Our model delivers a number of new insights. Even with small amounts of increasing returns,
asset demand curves can be upward sloping because IRS encourages market concentration and
agents are more likely to concentrate in market of an asset with plentiful supply. We also show
that small differences in the microstructure of an OTC market can be magnified into a big en-
dogenous liquidity advantage for one asset, because traders would prefer to be in the thick
market, and through their own entry help make it even thicker.

Our model predicts that for a reasonable set of parameters, a big and well-established bor-
rower such as the Treasury can enjoy a significant liquidity advantage, to the point where they
may be the only issuer of assets that trade at a liquidity premium. But in our model, whether the
Treasury will be a monopolist in the issuance of liquid assets or not is endogenous. The model
describes the conditions under which this will be the case, but it also describes what it would
take for the Treasury to lose this liquidity advantage. A more efficient and consolidated sec-
ondary market for corporate (or municipal) bonds – as recently advocated by market analysts
(BlackRock, 2014) – is one such candidate: it would increase the secondary market liquidity for
corporate bonds and, thus, jeopardize the monopoly of the Treasury.
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Appendix

A.1 Discussion of key modeling choices

One of the motivating examples of this paper is the superior liquidity of Treasuries over equally
safe debt of similar characteristics. One question that arises is whether other forms of debt can
be as safe as Treasuries. The short answer is yes: AAA corporate or municipal bonds are consid-
ered equally safe. AAA-rated bonds have an exceptional degree of creditworthiness, because
the issuer can easily meet its financial commitments. In many cases, AAA corporate bonds are
secured by assets (e.g., equipment, machinery or real estate) that are pledged as collateral, and
the creditor has a claim on the collateral if the issuer defaults on the bond. Similarly, in the case
of the so-called “insured municipal bonds”, which are also AAA-rated, the investor is covered
if the issuer fails to make coupon or principal payments. Finally, a large number of empirical
papers (Krishnamurthy and Vissing-Jorgensen (2012) would be an excellent example) estimate
the liquidity premium of Treasuries over high quality corporate bonds (with similar character-
istics) by focusing only on bonds that are considered as safe as Treasuries.30

We adopt a matching function that admits both CRS and IRS as subcases, and we present
results for each case, but one may say that some of the most interesting results of the paper
are derived using IRS. So how realistic are increasing returns to scale in financial markets?
Quite realistic, in fact, which is well-established both at the theoretical and the empirical level.
Duffie et al. (2005), and the vast majority of papers that follow their seminal work, adopt an IRS
matching technology.31 Furthermore, a number of empirical finance papers seem to confirm
the relevance of IRS in OTC markets: for example, there is strong evidence that markets with
higher trading volumes have lower bid-ask spreads. (See the discussion on page 54 of Vayanos
and Wang (2012).) If higher spreads are associated with longer search times, this would be an
argument suggesting IRS, since it would imply that markets with higher trading volume have
more traders who are searching, and have lower bid ask spreads because trading delays are
shorter. Are higher bid-ask spreads indeed associated with longer search times? Any theoret-
ical model of OTC trade we are aware of would predict so.32 As for the data, Amihud and
Mendelson (1986) provide support in favor of this empirical regularity. Also, a quick glance

30 Another example of assets that are equally safe but have different degrees of liquidity is (common) Treasuries
and Treasury inflation protected securities (TIPS). It is clear that the default risk of these two types of assets is
identical (they are issued by the same authority). Nevertheless, a large empirical finance literature documents
that TIPS suffer a significant illiquidity discount compared to common Treasuries (after controlling for expected
inflation). See for example Andreasen, Christensen, Cook, and Riddell (2016).

31 In that paper, the total number of matches between buyers and sellers of assets is given by 2λµBµS , where
µB , µS are the respective measures of buyers and sellers, equivalent to ρ = 1 in our model. Hence, the arrival rate
of a buyer to a seller is 2λµB , which does not depend of the number of sellers. This process is therefore not just
IRS, but completely congestion-free.

32 For example, in Duffie et al. (2005), the bid-ask spread is strictly decreasing in the arrival rate of trading
opportunities. Faster arrival rates imply a better outside option for the investor, thus a better bargaining position.
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at some of the main OTC markets suggests that this relationship is indeed true: markets that
are characterized by long trading delays, e.g., municipal bonds, are also typically characterized
by large spreads. Crucially, the amount of IRS needed in order to explain big divergences in
market outcomes in our model is really small.

A key assumption in our analysis is that secondary markets are segmented and agents can
visit only one per period. The first part of this assumption is certainly realistic: Treasuries and
municipal (or corporate) bonds do trade in secondary markets that are completely distinct. The
second part of the assumption, according to which agents can visit only one market, is stronger
– but, clearly, it is not meant to be taken literally. It does not imply a significant loss of generality
since it is a qualitative rather than quantitative ingredient for our model’s central mechanism: it
is just a stark way to capture the idea that even if some investors do visit multiple markets, they
will visit the market where they expect to find better trading conditions more frequently.33, 34

In the absence of market segmentation, the assets would be perfect substitutes and their
prices would always be identical. But the empirical finance literature abounds with examples
of assets that have pretty much identical characteristics, yet they trade at significantly different
prices (and in secondary markets with very different levels of liquidity, as measured by bid-ask
spreads, trading volumes, etc). It is also a fact that most fixed income dealers simply do not
intermediate multiple kinds of securities. Clearly there is some cost to becoming an expert in
a specific security, even for such similar ones as Treasury and AAA corporate bonds. Thus,
market segmentation is not only essential for our results, but also the empirically relevant case.

In our model, we study the differentiated Cournot game played by two bond issuers. One
question that arises is whether in reality bond issuers are strategic. (‘Strategic’ has two relevant
meanings: whether the issuers’ objective includes profit/rent maximization, and whether they
have market power.) First, the quote of the Assistant Secretary of the Treasury (presented in
Footnote 2) clearly indicates that the Treasury is interested in maximizing its rent from debt
issuance (although they call it “minimizing borrowing costs”). Similar evidence can be found
for debt issuing corporations. Greenwood, Hanson, and Stein (2010) document that debt issu-
ing corporations pay close attention to the actions taken by the Treasury and respond to these
moves by filling in the supply gaps created by changes in government financing patterns. For
another example, Robert Tipp, the Managing Director and Chief Investment Strategist of Pru-
dential Investment Management, highlights that chief financial officers in big corporations are

33 In reality, every time an investor buys or sells assets she has to incur some fixed cost. (This may include the
cost of acquiring information about the asset to be traded, the time and effort spent to locate a trading partner, or
commission fees.) If such a fixed cost was introduced into the model, an agent who wishes to boost her liquidity
would typically try to avoid visiting two markets, and she would only visit the market with better conditions.
Hence, the more complex model could deliver as a result what our simpler model adopts as an assumption: that
each agent liquidates assets only in one OTC market.

34 This assumption is analogous to a discrete choice model; such models are popular in economics (especially in
Industrial Organization) because they offer a tractable way of modeling individual consumer choice over various
goods while permitting a realistic description of aggregate market shares.
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paying close attention to the market conditions and especially to the demand for bonds issued
by the biggest player in the market: the Treasury.35

Given the discussion so far, we think that writing down a model where issuers play a dif-
ferentiated Cournot game is a reasonable choice. In the baseline model, we focus on the case
of a duopoly, but one can always generalize the model to include a general number of issuers,
N > 2. Then, how much market power each issuer has is a (decreasing) function of N . Over-
all, we think that a model where issuers play a Cournot game is closer to reality than a model
where issuers behave competitively.36 Crucially, our baseline model can be easily extended in
order to study a variety of alternative market structures. The Web Appendix contains three (out
of many possible) such extensions: B.1 studies equilibrium in the presence of a non-strategic is-
suer with fixed supply; B.2 studies Stackelberg equilibria where issuer A is the first mover; B.3
allows for issuer B to have a positive marginal cost of issuing assets.

A.2 Value functions, and terms of trade in the frictional markets

A.2.1 Value functions

We begin with the description of the value functions in the CM. Consider first a buyer who
enters this market with m units of fiat money and dj units of asset j = {A,B}. The Bellman
equation of the buyer is given by:

W (m, dA, dB) = max
X,H,m̂,

d̂A,d̂B

{
X −H + β Ei

{
max

{
Ωi
A

(
m̂, d̂A, d̂B

)
,Ωi

B

(
m̂, d̂A, d̂B

)}}}
s.t. X + ϕ(m̂+ pAd̂A + pBd̂B) = H + ϕ(m+ µM + dA + dB),

where variables with hats denote portfolio choices for the next period, and E denotes the ex-
pectations operator. The price of money is expressed in terms of the general good but the price
of bonds is expressed in nominal terms. The function Ωi

j represents the value function in the
OTC market for asset j ∈ {A,B} for a buyer of type i ∈ {C,N}, to be described in more detail
below. At the optimum, X and H are indeterminate but their difference is not. Using this fact
and substituting X −H from the budget constraint into W yields:

W (m, dA, dB) = ϕ(m+ µM + dA + dB) . . .

35 Source: http://www.marketwatch.com/story/treasury-yields-edge-higher-apple-expected-to-issue-bonds-
2016-02-16.

36 For instance, in September 2013, Verizon issued bonds worth 49 billion dollars; in January 2016, Anheuser-
Busch InBev issued bonds worth 46 billion dollars; in March 2018, CVS issued bonds worth 40 billion dollars (the
list goes on). It would be hard to argue that when these corporations issue debt of this size they behave as measure
zero agents whose actions have no effect on market prices.
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+ max
m̂,d̂A,d̂B

{
− ϕ(m̂+ pAd̂A + pBd̂B)

+ β`max
{

ΩC
A

(
m̂, d̂A, d̂B

)
,ΩC

B

(
m̂, d̂A, d̂B

)}
+ β(1− `) max

{
ΩN
A

(
m̂, d̂A, d̂B

)
,ΩN

B

(
m̂, d̂A, d̂B

)}}
. (A.1)

In the last expression, we have also used the fact that the representative buyer will be a C-type
with probability ` in order to replace the expectations operator. As is standard in models that
build on LW, the optimal choice of the agent does not depend on the current state (due to the
quasi-linearity of U), and the CM value function is linear. We write:

W (m, dA, dB) = ϕ(m+ dA + dB) + Υ, (A.2)

where the constant Υ collects the remaining terms that do not depend on the state variables
m, dA, dB.

As is well-known, a seller will not wish to leave the CM with positive amounts of money
and bond holdings. Therefore, when entering the CM a seller will only hold money that she
received as payment in the preceding DM, and her CM value function is given by:

W S(m) = max
X,H

{
X −H + V S

}
s.t. X = H + ϕm,

where V S denotes the seller’s value function in the forthcoming DM. We can again use the
budget constraint to substitute X −H and show that W S will be linear:

W S(m) = ϕm+ V S ≡ ΥS + ϕm. (A.3)

We now turn to the description of the OTC value functions. Recall that e
C
∈ [0, 1] and

e
N
∈ [0, 1] denote the fraction of C-types and N-types, respectively, who are entering OTCA.

Using the matching probabilities αij defined in Equations (1)-(2), we can now define the value
function for an agent of type i = {C,N} who decides to enter OTCj , j = {A,B}. Let ζj , denote
the amount of money that gets transferred to the C-type, and χj the amount of assets (of type
j) that gets transferred to the N-type in a typical match in OTCj , j = {A,B}. These terms are
described in detail in Lemma A.2 below. We have:

ΩC
A(m, dA, dB) = αCAV (m+ ζA, dA − χA, dB) + (1− αCA)V (m, dA, dB), (A.4)

ΩC
B(m, dA, dB) = αCBV (m+ ζB, dA, dB − χB) + (1− αCB)V (m, dA, dB), (A.5)

ΩN
A (m, dA, dB) = αNAW (m− ζA, dA + χA, dB) + (1− αNA)W (m, dA, dB), (A.6)

ΩN
B (m, dA, dB) = αNBW (m− ζB, dA, dB + χB) + (1− αNB)W (m, dA, dB), (A.7)
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where V denotes a buyer’s value function in the DM. Notice that N-type buyers proceed di-
rectly to next period’s CM.

Lastly, consider the value functions in the DM. Let q denote the quantity of goods traded,
and τ the total payment in units of fiat money. These terms are described in detail in Lemma
A.1 below. The DM value function for a buyer who enters that market with portfolio (m, dA, dB)

is given by:

V (m, dA, dB) = u(q) +W (m− τ, dA, dB), (A.8)

and the DM value function for a seller (who enters with no money or assets) is given by:

V S = −q + βW S(τ).

A.2.2 The terms of trade in the OTC markets and the DM

Consider a meeting between a C-type buyer with portfolio (m, dA, dB) and a seller who, in
the beginning of the DM sub-period, holds no money or assets. The two parties bargain over
a quantity q to be produced by the seller and a cash payment τ , to be made by the buyer.
The buyer makes a TIOLI offer maximizing her surplus subject to the seller’s participation
constraint and the cash constraint. The bargaining problem can be described by:

max
τ,q
{u(q) +W (m− τ, dA, dB)−W (m, dA, dB)}

s.t. − q +W S(τ)−W S(0) = 0,

and the cash constraint τ ≤ m. Substituting the value functions W,W S from (A.2) and (A.3)
into the expressions above, allows us to simplify this problem to:

max
τ,q
{u(q)− ϕτ}

s.t. q = ϕτ,

and τ ≤ m. The solution to the bargaining problem is described in the following lemma.

Lemma A.1. Let m∗ denote the amount of money that, given the CM value of money, ϕ, allows the
buyer to purchase the first-best quantity q∗, i.e., let m∗ = q∗/ϕ. Then, the solution to the bargaining
problem is given by τ(m) = min{m,m∗} and q(m) = ϕmin{m,m∗}.

Proof. The proof is standard and it is, therefore, omitted.

The solution to the bargaining problem is straightforward. The only variable that affects
the solution is the buyer’s money holdings. As long as the buyer carries m∗ or more, the first-
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best quantity q∗ will always be produced. If, on the other hand, m < m∗, the buyer does not
have enough cash to induce the seller to produce q∗. The cash constrained buyer will give up
all her money, τ(m) = m, and the seller will produce the quantity of good that satisfies her
participation constraint under τ(m) = m, namely, q = ϕm.

While Lemma A.1 describes the bargaining solution for all possible money holdings by the
C-type buyer, we know that, since µ > β − 1, the cost of carrying money is strictly positive and
a buyer will never choose to hold m > m∗.37 Hence, from now on we will focus on the binding
branch of the bargaining solution, i.e., we will set τ(m) = m and q(m) = ϕm.

We now describe the terms of trade in the OTC markets. Consider a meeting in OTCj ,
j = {A,B}, between a C-type carrying the portfolio (m, dA, dB) and an N-type with portfolio
(m̃, d̃A, d̃B). These agents negotiate over an amount of money, ζj , to be transferred to the C-type,
and an amount of type-j assets, χj , to be transferred to the N-type. Recall that the C-type makes
a TIOLI offer to the N-type with probability θ, and vice versa. In the match under consideration,
the surpluses for the C-type and the N-type agents are given by:

SCj = V (m+ ζj, dA − I{j = A}χA, dB − I{j = B}χB)− V (m, dA, dB)

= u(ϕ(m+ ζj))− u(ϕm)− ϕχj, (A.9)

SNj = W (m̃− ζj, d̃A + I{j = A}χA, d̃B + I{j = B}χB)−W (m̃, d̃A, d̃B) = ϕ(χj − ζj), (A.10)

where I denotes the identity function, and the second equalities in the equations above exploit
the definitions of the functions V,W (i.e., Equations (A.8) and (A.2), respectively).

Consider first the case in which the C-type makes the TIOLI offer. Then, the bargaining
problem is equivalent to maximizing SCj (with respect to ζj, χj), subject to SNj = 0 and χj ≤ dj .
On the other hand, if it is the N-type who makes the offer, the problem is equivalent to maxi-
mizing SNj , subject to SCj = 0 and χj ≤ dj .

We restrict attention to equilibria where the N-type’s money holdings never limit the trade,
hence the corresponding constraint ζj ≤ m̃ is slack. A sufficient condition that guarantees this
in equilibrium is given by inequality (6): inflation rates must be low enough that C-types (who
carry m units of money) and N-types (who carry m̃) can always obtain the first-best m∗ if they
were to pool their money (m + m̃ ≥ m∗). Actual trade may achieve m∗ or not, depending on
whether the C-type carries enough assets to compensate the N-type for her money. Exclud-
ing the scarce-money branch of the bargaining solution is convenient: that branch ultimately
generates a kink in the value function, which gives rise to an asset pricing indeterminacy, as
we extensively analyzed in Geromichalos and Herrenbrueck (2016). It is also innocent for the
purposes of our present paper: assets can only be priced (in the CM) at a determinate liquidity

37 Even if the buyer in question matches with an N-type in the preceding OTC round and acquires some extra
liquidity, she will never choose to adjust her post-OTC money balances in a way that these exceed m∗. This would
be unnecessary since carrying m∗ is already enough to buy her the first-best quantity in the forthcoming DM.
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premium if χj ≤ dj binds (in the OTC) but ζj ≤ m̃ does not. Since our interest is in asset issuers
who seek to exploit a positive premium, we think the restriction is acceptable.

The solution to the bargaining problem is described in the following lemma.

Lemma A.2. a) Suppose that the C-type is making the TIOLI offer. Define d̄C ≡ m∗ −m. Then, the
bargaining solution is given by χj(m, dj) = ζj(m, dj) = min{dj, d̄

C}.
b) Suppose that the N-type is making the TIOLI offer. Define d̄N ≡ [u(q∗) − u(ϕm)]/ϕ. Then, the

bargaining solution is given by χj(m, dj) = min{dj, d̄
N} and:

ζj(m, dj) =

ζ̃j(m, dj), if dj < d̄
N
,

m∗ −m, if dj ≥ d̄
N
,

where we have defined:

ζ̃j(m, dj) ≡ {ζ : u(ϕ(m+ ζ))− u(ϕm)− ϕdj = 0} .

Proof. It is straightforward to check that the suggested answer satisfies the necessary and suffi-
cient conditions for maximization in each case.

The OTC bargaining solution is intuitive. Regardless of which agent makes the TIOLI offer,
her objective is to maximize the available surplus of the match. This surplus is generated by
transferring more money to the C-type, and it is maximized when the C-type’s post-OTC money
holdings are m + ζj = m∗. However, in order to “afford” this transfer of liquidity, the C-type
needs to have enough assets, and the critical level of asset holdings that allows her to acquire
ζj = m∗ −m depends on who makes the offer. In particular, if the i-type makes the offer that
critical level is given by d̄ i , i = {C,N}, where, clearly, d̄N

> d̄
C since if the N-type makes the

offer he will ask for more assets to be compensated for m∗ −m units of money.
Summing up, if the C-type carries a sufficient amount of assets (defined as d̄ i when the i-

type makes the offer), then the money transfer will be optimal, i.e., ζj = m∗ −m, regardless of
who makes the offer, and the asset transfer will satisfy χj = d̄

i , where i is the type of agent who
makes the offer. On the other hand, if the C-type is constrained by her asset holdings (i.e., if
dj < d̄

i when the i-type makes the offer), then the C-type will give up all her assets, χj = dj , and
she will receive a money transfer which is smaller than m∗−m and depends on who makes the
offer. More precisely, it satisfies ζj = dj , if the C-type makes the offer, and ζj = ζ̃j , if the N-type
makes the offer. It is easy to verify that ζ̃j < dj , for all dj < d̄

N , since if the N-type makes the
offer she will transfer a lower amount of money to the C-type (for any given amount of assets
dj < d̄

N that she receives).
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